We report a study on the magnetotransport properties and on the Fermi
surfaces (FS) of the ZrSi(Se,Te) semimetals. Density Functional Theory (DFT)
calculations, in absence of spin orbit coupling (SOC), reveal that both the Se
and the Te compounds display Dirac nodal lines (DNL) close to the Fermi level
εF at symmorphic and non-symmorphic positions, respectively. We
find that the geometry of their FSs agrees well with DFT predictions. ZrSiSe
displays low residual resistivities, pronounced magnetoresistivity, high
carrier mobilities, and a butterfly-like angle-dependent magnetoresistivity
(AMR), although its DNL is not protected against gap opening. As in
Cd3As2, its transport lifetime is found to be 102 to 103 times
larger than its quantum one. ZrSiTe, which possesses a protected DNL, displays
conventional transport properties. Our evaluation indicates that both compounds
most likely are topologically trivial. Nearly angle-independent effective
masses with strong angle dependent quantum lifetimes lead to the butterfly AMR
in ZrSiSe