2,253 research outputs found

    Nuclear collisions at the Future Circular Collider

    Full text link
    The Future Circular Collider is a new proposed collider at CERN with centre-of-mass energies around 100 TeV in the pp mode. Ongoing studies aim at assessing its physics potential and technical feasibility. Here we focus on updates in physics opportunities accessible in pA and AA collisions not covered in previous Quark Matter contributions, including Quark-Gluon Plasma and gluon saturation studies, novel hard probes of QCD matter, and photon-induced collisions.Comment: 4 pages, 5 figures, proceedings of Quark Matter 201

    Biparametric (bp) and multiparametric (mp) magnetic resonance imaging (MRI) approach to prostate cancer disease: a narrative review of current debate on dynamic contrast enhancement

    Get PDF
    Prostate cancer is the most common malignancy in male population. Over the last few years, magnetic resonance imaging (MRI) has proved to be a robust clinical tool for identification and staging of clinically significant prostate cancer. Though suggestions by the European Society of Urogenital Radiology to use complete multiparametric (mp) T2-weighted/diffusion weighted imaging (DWI)/dynamic contrast enhancement (DCE) acquisition for all prostate MRI examinations, the real advantage of functional DCE remains a matter of debate. Recent studies demonstrate that biparametric (bp) and mp approaches have similar accuracy, but controversial evidences remain, and the specific potential benefits of contrast medium administration are still poorly discussed in literature. The bp approach is in fact sufficient in most cases to adequately identify a negative test, or to accurately define the degree of aggressiveness of a lesion, especially if larger or with major characteristics of malignancy. This feature would give the DCE a secondary role, probably limited to a second evaluation of the lesion location, for detecting small cancer or in case of controversy. However, DCE has proved to increase the sensitivity of prostate MRI, though a less specificity. Therefore, an appropriate decision algorithm is needed to standardize the MRI approach. Aim of this review study was to provide a schematic description of bpMRI and mpMRI approaches in the study of prostatic anatomy, focusing on comparative validity and current DCE application. Additional theoretical considerations on prostate MRI are provided

    Foraging niche separation of social wasps in an invaded area: Implications for their management

    Get PDF
    Foraging niche separation may be a mechanism to promote coexistence of two competing species by concentrating intraspecific competition relative to interspecific competition. The present study investigated foraging behaviour and microhabitat use of two coexisting species of invasive social wasps, Vespula germanica and Vespula vulgaris, when foraging for two different food resources. Also, we tested the attractiveness of traps baited with a synthetic lure for those two species. We found that V. germanica wasps prefer to forage at ground level regardless of the resource, while V. vulgaris prefers protein resources at the shrubland level given a choice between a protein bait at ground or at shrubland level. However, when baited with the synthetic lure, the species caught was not affected by the height at which traps were placed. That is, in a no choice scenario, the traps were sufficiently attractive to lure both species of wasps to both microhabitats (ground and shrubland levels). Thus, our results support the existence of spatial niche differentiation at least in protein foraging and suggest that the synthetic lure evaluated could be used to trap both species of Vespula wasps present in Argentina. These results could help to improve management strategies of these social wasps in an invaded area.EstaciĂłn Experimental Agropecuaria BarilocheFil: Masciocchi, Maite. Instituto Nacional de TecnologĂ­a Agropecuaria (INTA). EstaciĂłn Experimental Agropecuaria Bariloche. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituo de Investigaciones Forestales y Agropecuarias Bariloche. Grupo de EcologĂ­a de Poblaciones de Insectos; ArgentinaFil: Unelius, Carl Rikard. Linnaeus University. Faculty of Health and Life Sciences; SueciaFil: Buteler, Micaela. Universidad Nacional del Comahue. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Investigaciones en Biodiversidad y Medio Ambiente; Argentin

    Plasma Neurofilament Light Chain Predicts Cognitive Progression in Prodromal and Clinical Dementia with Lewy Bodies

    Get PDF
    Plasma neurofilament light chain (NfL) is a marker of neuronal damage in different neurological disorders and might predict disease progression in dementia with Lewy bodies (DLB). The study enrolled 45 controls and 44 DLB patients (including 17 prodromal cases) who underwent an extensive assessment at baseline and at 2 years follow-up. At baseline, plasma NfL levels were higher in both probable DLB and prodromal cases compared to controls. Plasma NfL emerged as the best predictor of cognitive decline compared to age, sex, and baseline severity variables. The study supports the role of plasma NfL as a useful prognostic biomarker from the early stages of DLB

    Urea-Doped Calcium Phosphate Nanoparticles as Sustainable Nitrogen Nanofertilizers for Viticulture: Implications on Yield and Quality of Pinot Gris Grapevines

    Get PDF
    In recent years, the application of nanotechnology for the development of new “smart fertilizers” is regarded as one of the most promising solutions for boosting a more sustainable and modern grapevine cultivation. Despite showing interesting potential benefits over conventional fertilization practices, the use of nanofertilizers in viticulture is still underexplored. In this work, we investigated the effectiveness of non-toxic calcium phosphate nanoparticles (Ca3(PO4)2∙nH2O) doped with urea (U-ACP) as a nitrogen source for grapevine fertilization. Plant tests were performed for two years (2019–2020) on potted adult Pinot gris cv. vines grown under semi-controlled conditions. Four fertilization treatments were compared: N1: commercial granular fertilization (45 kg N ha−1); N2: U-ACP applied in fertigation (36 kg N ha−1); N3: foliar application of U-ACP (36 kg N ha−1); C: control, receiving no N fertilization. Plant nitrogen status (SPAD), yield parameters as well as those of berry quality were analyzed. Results here presented clearly show the capability of vine plants to recognize and use the nitrogen supplied with U-ACP nanoparticles either when applied foliarly or to the soil. Moreover, all of the quali–quantitative parameters measured in vine plants fed with nanoparticles were perfectly comparable to those of plants grown in conventional condition, despite the restrained dosage of nitrogen applied with the nanoparticles. Therefore, these results provide both clear evidence of the efficacy of U-ACP nanoparticles as a nitrogen source and the basis for the development of alternative nitrogen fertilization strategies, optimizing the dosage/benefit ratio and being particularly interesting in a context of a more sustainable and modern viticulture.PSR 2014/2020 Regione Autonoma Friuli Venezia Giulia—Misure 16.1.1, DGR 1313/2018, DC 398/AGFOR 2020—GESOVIT PROJECTFondazione Cariplo, Italy, Grant n. 2016-0648, project: Romancing the stone: size controlled HYdroxyaPATItes for sustainable Agriculture (HYPATIA

    MICE: the Muon Ionization Cooling Experiment. Step I: First Measurement of Emittance with Particle Physics Detectors

    Get PDF
    The Muon Ionization Cooling Experiment (MICE) is a strategic R&D project intended to demonstrate the only practical solution to providing high brilliance beams necessary for a neutrino factory or muon collider. MICE is under development at the Rutherford Appleton Laboratory (RAL) in the United Kingdom. It comprises a dedicated beamline to generate a range of input muon emittances and momenta, with time-of-flight and Cherenkov detectors to ensure a pure muon beam. The emittance of the incoming beam will be measured in the upstream magnetic spectrometer with a scintillating fiber tracker. A cooling cell will then follow, alternating energy loss in Liquid Hydrogen (LH2) absorbers to RF cavity acceleration. A second spectrometer, identical to the first, and a second muon identification system will measure the outgoing emittance. In the 2010 run at RAL the muon beamline and most detectors were fully commissioned and a first measurement of the emittance of the muon beam with particle physics (time-of-flight) detectors was performed. The analysis of these data was recently completed and is discussed in this paper. Future steps for MICE, where beam emittance and emittance reduction (cooling) are to be measured with greater accuracy, are also presented

    Search for the exotic Ξ−−(1860)\Xi^{--}(1860) Resonance in 340GeV/c Σ−\Sigma^--Nucleus Interactions

    Full text link
    We report on a high statistics search for the Ξ−−(1860)\Xi^{--}(1860) resonance in Σ−\Sigma^--nucleus collisions at 340GeV/c. No evidence for this resonance is found in our data sample which contains 676000 Ξ−\Xi^- candidates above background. For the decay channel Ξ−−(1860)→Ξ−π−\Xi^{--}(1860) \to \Xi^-\pi^- and the kinematic range 0.15<xF<<x_F<0.9 we find a 3σ\sigma upper limit for the production cross section of 3.1 and 3.5 ÎŒ\mub per nucleon for reactions with carbon and copper, respectively.Comment: 5 pages, 4 figures, modification of ref. 43 and 4

    MICE: The muon ionization cooling experiment. Step I: First measurement of emittance with particle physics detectors

    Get PDF
    Copyright @ 2011 APSThe Muon Ionization Cooling Experiment (MICE) is a strategic R&D project intended to demonstrate the only practical solution to providing high brilliance beams necessary for a neutrino factory or muon collider. MICE is under development at the Rutherford Appleton Laboratory (RAL) in the United Kingdom. It comprises a dedicated beamline to generate a range of input muon emittances and momenta, with time-of-flight and Cherenkov detectors to ensure a pure muon beam. The emittance of the incoming beam will be measured in the upstream magnetic spectrometer with a scintillating fiber tracker. A cooling cell will then follow, alternating energy loss in Liquid Hydrogen (LH2) absorbers to RF cavity acceleration. A second spectrometer, identical to the first, and a second muon identification system will measure the outgoing emittance. In the 2010 run at RAL the muon beamline and most detectors were fully commissioned and a first measurement of the emittance of the muon beam with particle physics (time-of-flight) detectors was performed. The analysis of these data was recently completed and is discussed in this paper. Future steps for MICE, where beam emittance and emittance reduction (cooling) are to be measured with greater accuracy, are also presented.This work was supported by NSF grant PHY-0842798

    Measurement of the Omega_c Lifetime

    Full text link
    We present the measurement of the lifetime of the Omega_c we have performed using three independent data samples from two different decay modes. Using a Sigma- beam of 340 GeV/c we have obtained clean signals for the Omega_c decaying into Xi- K- pi+ pi+ and Omega- pi+ pi- pi+, avoiding topological cuts normally used in charm analysis. The short but measurable lifetime of the Omega_c is demonstrated by a clear enhancement of the signals at short but finite decay lengths. Using a continuous maximum likelihood method we determined the lifetime to be tau(Omega_c) = 55 +13-11(stat) +18-23(syst) fs. This makes the Omega_c the shortest living weakly decaying particle observed so far. The short value of the lifetime confirms the predicted pattern of the charmed baryon lifetimes and demonstrates that the strong interaction plays a vital role in the lifetimes of charmed hadrons.Comment: 15 pages, including 7 figures; gzipped, uuencoded postscrip
    • 

    corecore