685 research outputs found

    Aging and aerobic fitness affect the contribution of noradrenergic sympathetic nerves to the rapid cutaneous vasodilator response to local heating

    Get PDF
    Sedentary aging results in a diminished rapid cutaneous vasodilator response to local heating. We investigated whether this diminished response was due to altered contributions of noradrenergic sympathetic nerves; assessing 1) the age-related decline and, 2) the effect of aerobic fitness. We measured skin blood flow (SkBF)(laser-Doppler flowmetry) in young (24±1 yr) and older (64±1 yr) endurance-trained and sedentary men (n=7 per group) at baseline and during 35 min of local skin heating to 42 °C at three forearm sites: 1) untreated; 2) bretylium tosylate (BT), preventing neurotransmitter release from noradrenergic sympathetic nerves; and 3) yohimbine and propranolol (YP), antagonising α- and β-adrenergic receptors. SkBF was converted to cutaneous vascular conductance (CVC) (SkBF/mean arterial pressure) and normalized to maximal CVC (%CVCmax) achieved by skin heating to 44 °C. Pharmacological agents were administered using microdialysis. In the young trained, the rapid vasodilator response was reduced at the BT and YP sites (P0.05) but treatment with BT did (P>0.05). Neither BT nor YP treatments affected the rapid vasodilator response in the older sedentary group (P>0.05). These data suggest that the age-related reduction in the rapid vasodilator response is due to an impairment of sympathetic-dependent mechanisms, which can be partly attenuated with habitual aerobic exercise. Rapid vasodilation involves noradrenergic neurotransmitters in young trained men, and non-adrenergic sympathetic cotransmitters (e.g., neuropeptide Y) in young sedentary and older trained men, possibly as a compensatory mechanism. Finally, in older sedentary men, the rapid vasodilation appears not to involve the sympathetic system

    Anisotropy and oblique total transmission at a planar negative-index interface

    Full text link
    We show that a class of negative index (n) materials has interesting anisotropic optical properties, manifest in the effective refraction index that can be positive, negative, or purely imaginary under different incidence conditions. With dispersion taken into account, reflection at a planar negative-index interface exhibits frequency selective total oblique transmission that is distinct from the Brewster effect. Finite-difference-time-domain simulation of realistic negative-n structures confirms the analytic results based on effective indices.Comment: to appear in Phys. Rev.

    Suppression of Anderson localization of light and Brewster anomalies in disordered superlattices containing a dispersive metamaterial

    Get PDF
    Light propagation through 1D disordered structures composed of alternating layers, with random thicknesses, of air and a dispersive metamaterial is theoretically investigated. Both normal and oblique incidences are considered. By means of numerical simulations and an analytical theory, we have established that Anderson localization of light may be suppressed: (i) in the long wavelength limit, for a finite angle of incidence which depends on the parameters of the dispersive metamaterial; (ii) for isolated frequencies and for specific angles of incidence, corresponding to Brewster anomalies in both positive- and negative-refraction regimes of the dispersive metamaterial. These results suggest that Anderson localization of light could be explored to control and tune light propagation in disordered metamaterials.Comment: 4 two-column pages, 3 figure

    Relativistic and slowing down: the flow in the hotspots of powerful radio galaxies and quasars

    Full text link
    Pairs of radio emitting jets with lengths up to several hundred kiloparsecs emanate from the central region (the `core') of radio loud active galaxies. In the most powerful of them, these jets terminate in the `hotspots', compact high brightness regions, where the jet flow collides with the intergalactic medium (IGM). Although it has long been established that in their inner (\simparsec) regions these jet flows are relativistic, it is still not clear if they remain so at their largest (hundreds of kiloparsec) scales. We argue that the X-ray, optical and radio data of the hotspots, despite their at-first-sight disparate properties, can be unified in a scheme involving a relativistic flow upstream of the hotspot that decelerates to the sub-relativistic speed of its inferred advance through the IGM and viewed at different angles to its direction of motion. This scheme, besides providing an account of the hotspot spectral properties with jet orientation, it also suggests that the large-scale jets remain relativistic all the way to the hotspots.Comment: to appear in ApJ

    Absolute negative refraction and imaging of unpolarized electromagnetic waves by two-dimensional photonic crystals

    Full text link
    Absolute negative refraction regions for both polarizations of electromagnetic wave in two-dimensional photonic crystal have been found through both the analysis and the exact numerical simulation. Especially, absolute all-angle negative refraction for both polarizations has also been demonstrated. Thus, the focusing and image of unpolarized light can be realized by a microsuperlens consisting of the two-dimensional photonic crystals. The absorption and compensation for the losses by introducing optical gain in these systems have also been discussed

    A relative entropy rate method for path space sensitivity analysis of stationary complex stochastic dynamics

    Get PDF
    We propose a new sensitivity analysis methodology for complex stochastic dynamics based on the Relative Entropy Rate. The method becomes computationally feasible at the stationary regime of the process and involves the calculation of suitable observables in path space for the Relative Entropy Rate and the corresponding Fisher Information Matrix. The stationary regime is crucial for stochastic dynamics and here allows us to address the sensitivity analysis of complex systems, including examples of processes with complex landscapes that exhibit metastability, non-reversible systems from a statistical mechanics perspective, and high-dimensional, spatially distributed models. All these systems exhibit, typically non-gaussian stationary probability distributions, while in the case of high-dimensionality, histograms are impossible to construct directly. Our proposed methods bypass these challenges relying on the direct Monte Carlo simulation of rigorously derived observables for the Relative Entropy Rate and Fisher Information in path space rather than on the stationary probability distribution itself. We demonstrate the capabilities of the proposed methodology by focusing here on two classes of problems: (a) Langevin particle systems with either reversible (gradient) or non-reversible (non-gradient) forcing, highlighting the ability of the method to carry out sensitivity analysis in non-equilibrium systems; and, (b) spatially extended Kinetic Monte Carlo models, showing that the method can handle high-dimensional problems

    Topology dependent quantities at the Anderson transition

    Full text link
    The boundary condition dependence of the critical behavior for the three dimensional Anderson transition is investigated. A strong dependence of the scaling function and the critical conductance distribution on the boundary conditions is found, while the critical disorder and critical exponent are found to be independent of the boundary conditions

    Anderson transition on the Cayley tree as a traveling wave critical point for various probability distributions

    Full text link
    For Anderson localization on the Cayley tree, we study the statistics of various observables as a function of the disorder strength WW and the number NN of generations. We first consider the Landauer transmission TNT_N. In the localized phase, its logarithm follows the traveling wave form lnTNlnTNˉ+lnt\ln T_N \simeq \bar{\ln T_N} + \ln t^* where (i) the disorder-averaged value moves linearly ln(TN)ˉNξloc\bar{\ln (T_N)} \simeq - \frac{N}{\xi_{loc}} and the localization length diverges as ξloc(WWc)νloc\xi_{loc} \sim (W-W_c)^{-\nu_{loc}} with νloc=1\nu_{loc}=1 (ii) the variable tt^* is a fixed random variable with a power-law tail P(t)1/(t)1+β(W)P^*(t^*) \sim 1/(t^*)^{1+\beta(W)} for large tt^* with 0<β(W)1/20<\beta(W) \leq 1/2, so that all integer moments of TNT_N are governed by rare events. In the delocalized phase, the transmission TNT_N remains a finite random variable as NN \to \infty, and we measure near criticality the essential singularity ln(T)ˉWcWκT\bar{\ln (T)} \sim - | W_c-W |^{-\kappa_T} with κT0.25\kappa_T \sim 0.25. We then consider the statistical properties of normalized eigenstates, in particular the entropy and the Inverse Participation Ratios (I.P.R.). In the localized phase, the typical entropy diverges as (WWc)νS(W-W_c)^{- \nu_S} with νS1.5\nu_S \sim 1.5, whereas it grows linearly in NN in the delocalized phase. Finally for the I.P.R., we explain how closely related variables propagate as traveling waves in the delocalized phase. In conclusion, both the localized phase and the delocalized phase are characterized by the traveling wave propagation of some probability distributions, and the Anderson localization/delocalization transition then corresponds to a traveling/non-traveling critical point. Moreover, our results point towards the existence of several exponents ν\nu at criticality.Comment: 28 pages, 21 figures, comments welcom

    A Viewing Angle - Kinetic Luminosity Unification Scheme For BL Lacertae Objects

    Get PDF
    We propose a unified classification for BL Lac objects (BLs), focusing on the synchrotron peak frequency of the spectral energy distribution. The unification scheme is based on the angle Theta that describes the orientation of the relativistic jet and on the electron kinetic luminosity Lambda of the jet. We assume that Lambda scales with the size of the jet r in a self-similar fashion (Lambda propto r^2), as supported by observational data. The jets are self-similar in geometry and have the same pressure and median magnetic field at the inlet, independent of size. The self-similarity is broken for the highest energy electrons, which radiate mainly at high frequencies, since for large sources they suffer more severe radiative energy losses over a given fraction of the jet length. We calculate the optically thin synchrotron spectrum using an accelerating inner jet model based on simple relativistic gas dynamics and show that it can fit the observed infrared to X-ray spectrum of PKS 2155--304. We couple the accelerating jet model to the unification scheme and compare the results to complete samples of BLs. The negative apparent evolution of X-ray selected BLs is explained as a result of positive evolution of the jet electron kinetic luminosity Λkin\Lambda_{kin}. We review observational arguments in favor of the existence of scaled-down accretion disks and broad emission-line regions in BLs. The proposed unification scheme can explain the lack of observed broad emission lines in X-ray selected BLs, as well as the existence of those lines preferentially in luminous radio-selected BLs. Finally, we review observational arguments that suggest the extension of this unification scheme to all blazars.Comment: 32 pages, 8 figures, to be published in the ApJ (Oct 20, 1998
    corecore