Light propagation through 1D disordered structures composed of alternating
layers, with random thicknesses, of air and a dispersive metamaterial is
theoretically investigated. Both normal and oblique incidences are considered.
By means of numerical simulations and an analytical theory, we have established
that Anderson localization of light may be suppressed: (i) in the long
wavelength limit, for a finite angle of incidence which depends on the
parameters of the dispersive metamaterial; (ii) for isolated frequencies and
for specific angles of incidence, corresponding to Brewster anomalies in both
positive- and negative-refraction regimes of the dispersive metamaterial. These
results suggest that Anderson localization of light could be explored to
control and tune light propagation in disordered metamaterials.Comment: 4 two-column pages, 3 figure