256 research outputs found

    Molecular and Genetic Regulation of Sensory Quality of Climacteric Fruit

    Get PDF
    The sensory quality of fruit has become a major criterion in making the purchasing decision by consumers. Breeding programs have mainly been directed, from the post-harvest stand point, towards improving shelf-life. Chance seedlings or mutants with improved agronomic traits and/or extended shelf-life have been used for introgressing the long shelf-life character and eventually improved sensory quality traits in commercial genotypes of apple, melon or tomato. Because the plant hormone ethylene plays a central role in both storability and ripening of climacteric fruit, the generation by biotechnology of ethylene-inhibited fruit has offered a powerful tool to better understand, at the molecular and genetic level, the interrelations between storability and sensory quality. In the melon, inhibition of ethylene synthesis results is a strong inhibition of the synthesis of aroma volatiles while the accumulation of sugars is not affected or is even improved. The softening of the flesh is strongly affected but not abolished. Mid or long shelf-life melons generated by classical breeding present the same behavior. The generation of recombinant inbred lines by crossing a typical climacteric melon (Cantaloupe Charentais of the cantalupensis group) with a non climacteric melon (PI161375 of the agrestis chinensis group) allowed to demonstrate that the climacteric character is conferred by 2 duplicated loci only, which are of great importance for the regulation of storability and sensory quality. Due to the importance of aroma volatiles in sensory quality and to the strong negative correlation between aroma production and ethylene synthesis, we have developed a research program aimed at isolating genes involved in the synthesis of aroma volatiles. We will report on the recent advances in the field with special emphasis on the characterization of genes responsible for the synthesis of esters, a family of compounds crucial for the flavor of many fruit

    Endogenous cycles, activity patterns and energy expenditure of an intertidal fish is modified by artificial light pollution at night (ALAN)

    Get PDF
    The increase of global light emissions in recent years has highlighted the need for urgent evaluation of their impacts on the behaviour, ecology and physiology of organisms. Numerous species exhibit daily cycles or strong scototaxic behaviours that could potentially be influenced if natural lighting conditions or cycles are disrupted. Artificial Light Pollution at Night (ALAN) stands for situations where artificial light alters natural light-dark cycles, as well as light intensities and wavelengths. ALAN is increasingly recognized as a potential threat to biodiversity, mainly because a growing number of studies are demonstrating its influence on animal behaviour, migration, reproduction and biological interactions. Most of these studies have focused on terrestrial organisms and ecosystems with studies on the effects of ALAN on marine ecosystems being more occasional. However, with the increasing human use and development of the coastal zone, organisms that inhabit shallow coastal or intertidal systems could be at increasing risk from ALAN. In this study we measured the levels of artificial light intensity in the field and used these levels to conduct experimental trials to determine the impact of ALAN on an intertidal fish. Specifically, we measured ALAN effects on physiological performance (oxygen consumption) and behaviour (activity patterns) of “Baunco” the rockfish Girella laevifrons, one of the most abundant and ecologically important intertidal fish in the Southeastern Pacific littoral. Our results indicated that individuals exposed to ALAN exhibited increased oxygen consumption and activity when compared with control animals. Moreover, those fish exposed to ALAN stopped displaying the natural (circatidal and circadian) activity cycles that were observed in control fish throughout the experiment. These changes in physiological function and behaviour could have serious implications for the long-term sustainability of fish populations and indirect impacts on intertidal communities in areas affected by ALAN

    Theory of Room Temperature Ferromagnet V(TCNE)_x (1.5 < x < 2): Role of Hidden Flat Bands

    Full text link
    Theoretical studies on the possible origin of room temperature ferromagnetism (ferromagnetic once crystallized) in the molecular transition metal complex, V(TCNE)_x (1.5<x<2) have been carried out. For this family, there have been no definite understanding of crystal structure so far because of sample quality, though the effective valence of V is known to be close to +2. Proposing a new crystal structure for the stoichiometric case of x=2, where the valence of each TCNE molecule is -1 and resistivity shows insulating behavior, exchange interaction among d-electrons on adjacent V atoms has been estimated based on the cluster with 3 vanadium atoms and one TCNE molecule. It turns out that Hund's coupling among d orbitals within the same V atoms and antiferromagnetic coupling between d oribitals and LUMO of TCNE (bridging V atoms) due to hybridization result in overall ferromagnetism (to be precise, ferrimagnetism). This view based on localized electrons is supplemented by the band picture, which indicates the existence of a flat band expected to lead to ferromagnetism as well consistent with the localized view. The off-stoichiometric cases (x<2), which still show ferromagnetism but semiconducting transport properties, have been analyzed as due to Anderson localization.Comment: Accepted for publication in J. Phys. Soc. Jpn. Vol.79 (2010), No. 3 (March issue), in press; 6 pages, 8 figure

    Numerical Study of a Mixed Ising Ferrimagnetic System

    Full text link
    We present a study of a classical ferrimagnetic model on a square lattice in which the two interpenetrating square sublattices have spins one-half and one. This model is relevant for understanding bimetallic molecular ferrimagnets that are currently being synthesized by several experimental groups. We perform exact ground-state calculations for the model and employ Monte Carlo and numerical transfer-matrix techniques to obtain the finite-temperature phase diagram for both the transition and compensation temperatures. When only nearest-neighbor interactions are included, our nonperturbative results indicate no compensation point or tricritical point at finite temperature, which contradicts earlier results obtained with mean-field analysis.Comment: Figures can be obtained by request to [email protected] or [email protected]

    Direct measurement and modeling of intraglottal, subglottal, and vocal fold collision pressures during phonation in an individual with a hemilaryngectomy

    Get PDF
    The purpose of this paper is to report on the first in vivo application of a recently developed transoral, dual-sensor pressure probe that directly measures intraglottal, subglottal, and vocal fold collision pressures during phonation. Synchronous measurement of intraglottal and subglottal pressures was accomplished using two miniature pressure sensors mounted on the end of the probe and inserted transorally in a 78-year-old male who had previously undergone surgical removal of his right vocal fold for treatment of laryngeal cancer. The endoscopist used one hand to position the custom probe against the surgically medialized scar band that replaced the right vocal fold and used the other hand to position a transoral endoscope to record laryngeal high-speed videoendoscopy of the vibrating left vocal fold contacting the pressure probe. Visualization of the larynx during sustained phonation allowed the endoscopist to place the dual-sensor pressure probe such that the proximal sensor was positioned intraglottally and the distal sensor subglottally. The proximal pressure sensor was verified to be in the strike zone of vocal fold collision during phonation when the intraglottal pressure signal exhibited three characteristics: an impulsive peak at the start of the closed phase, a rounded peak during the open phase, and a minimum value around zero immediately preceding the impulsive peak of the subsequent phonatory cycle. Numerical voice production modeling was applied to validate model-based predictions of vocal fold collision pressure using kinematic vocal fold measures. The results successfully demonstrated feasibility of in vivo measurement of vocal fold collision pressure in an individual with a hemilaryngectomy, motivating ongoing data collection that is designed to aid in the development of vocal dose measures that incorporate vocal fold impact collision and stresses.Fil: Mehta, Daryush D.. Massachusetts General Hospital; Estados UnidosFil: Kobler, James B.. Massachusetts General Hospital; Estados UnidosFil: Zeitels, Steven M.. Harvard Medical School. Department of Medicine. Massachusetts General Hospital; Estados UnidosFil: Zañartu, Matías. Universidad Técnica Federico Santa María; ChileFil: Ibarra, Emiro J.. Universidad Técnica Federico Santa María; ChileFil: Alzamendi, Gabriel Alejandro. Universidad Nacional de Entre Ríos. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática; ArgentinaFil: Manriquez, Rodrigo. Universidad Técnica Federico Santa María; ChileFil: Erath, Byron D.. Clarkson University; Estados UnidosFil: Peterson, Sean D.. University of Waterloo; CanadáFil: Petrillo, Robert H.. Center For Laryngeal Surgery and Voice Rehabilitation; Estados UnidosFil: Hillman, Robert E.. Center For Laryngeal Surgery and Voice Rehabilitation; Estados Unidos. Harvard Medical School. Department of Medicine. Massachusetts General Hospital; Estados Unido

    Electronic Structure of Transition-Metal Dicyanamides Me[N(CN)2_2]2_2 (Me = Mn, Fe, Co, Ni, Cu)

    Full text link
    The electronic structure of Me[N(CN)2_2]2_2 (Me=Mn, Fe, Co, Ni, Cu) molecular magnets has been investigated using x-ray emission spectroscopy (XES) and x-ray photoelectron spectroscopy (XPS) as well as theoretical density-functional-based methods. Both theory and experiments show that the top of the valence band is dominated by Me 3d bands, while a strong hybridization between C 2p and N 2p states determines the valence band electronic structure away from the top. The 2p contributions from non-equivalent nitrogen sites have been identified using resonant inelastic x-ray scattering spectroscopy with the excitation energy tuned near the N 1s threshold. The binding energy of the Me 3d bands and the hybridization between N 2p and Me 3d states both increase in going across the row from Me = Mn to Me = Cu. Localization of the Cu 3d states also leads to weak screening of Cu 2p and 3s states, which accounts for shifts in the core 2p and 3s spectra of the transition metal atoms. Calculations indicate that the ground-state magnetic ordering, which varies across the series is largely dependent on the occupation of the metal 3d shell and that structural differences in the superexchange pathways for different compounds play a secondary role.Comment: 20 pages, 11 figures, 2 table

    Magnetic Behavior of a Mixed Ising Ferrimagnetic Model in an Oscillating Magnetic Field

    Full text link
    The magnetic behavior of a mixed Ising ferrimagnetic system on a square lattice, in which the two interpenetrating square sublattices have spins +- 1/2 and spins +-1,0, in the presence of an oscillating magnetic field has been studied with Monte Carlo techniques. The model includes nearest and next-nearest neighbor interactions, a crystal field and the oscillating external field. By studying the hysteretic response of this model to an oscillating field we found that it qualitatively reproduces the increasing of the coercive field at the compensation temperature observed in real ferrimagnets, a crucial feature for magneto-optical applications. This behavior is basically independent of the frequency of the field and the size of the system. The magnetic response of the system is related to a dynamical transition from a paramagnetic to a ferromagnetic phase and to the different temperature dependence of the relaxation times of both sublattices.Comment: 10 figures. To be published in Phys.Rev

    Warpage Behavior of 7075 Aluminum Alloy Extrusions

    Get PDF
    Extruded I sections of 7075-T6 aluminum were machined into four different sections shapes: L, short depth L, T, and short depth 7. The furnace was preheated to 416 degrees C (780 degrees F) and the samples were placed inside. The temperature was raised to 471 degrees C (880 degrees F) and then the samples were quenched in either a 30% polyalkylene Glycol solution or water, both at 15 degrees C (59 degrees F). Points on the distorted samples were recorded before and after the solution treatment; the difference between the measurements indicated the extent of warpage

    Efeito do tratamento com aminoetoxivinilglicina (AVG) na queda pré-colheita e na maturação dos frutos em macieiras

    Get PDF
    ABSTRACTApple trees cultivars Gala and Fuji were sprayed four weeks before commercial harvest with aminoethoxyvinilglycine (AVG), at doses of 0, 125, or 250 mg L-1, and assessed for preharvest fruit drop, fruit growth, and maturation on tree. In 'Gala', 64 days after AVG spraying, fruit drop for control treatment was 85%, and AVG (at 125 and 250 mg L-1) reduced it to 10%. In 'Fuji', 64 days after AVG spraying, fruit drop for control was 6%, while treatments with AVG (at 125 and 250 mg L-1) increased fruit drop to 10%. AVG was a powerful retardant of fruit maturation for 'Gala' but not for 'Fuji'. In 'Gala', the most affected attribute was the skin background color, followed, in decreasing order, by soluble solids content, the starch index, skin red color, the flesh firmness, and titratable acidity. In 'Gala', only flesh firmness retention was improved by increasing AVG dose from 125 mg L-1 to 250 mg L-1. The AVG at 250 mg L-1 inhibited "Gala" late fruit growth but not 'Fuji'. __________________________________________________________________________________ RESUMOMacieiras, das cultivares Gala e Fuji, foram pulverizadas quatro semanas antes do início da colheita comercial dos frutos com aminoetoxivinilglicina (AVG), nas concentrações de 0; 125 ou 250 mg L-1, e avaliadas quanto à queda de frutos na pré-colheita, o crescimento e maturação dos frutos. Na cultivar Gala, 64 dias após a pulverização com AVG, a queda pré-colheita no tratamento-controle era de 85%, mas os tratamentos com AVG (125 e 250 mg L-1) reduziram esta queda para 10%. Na cultivar Fuji, 64 dias após a pulverização com AVG, a queda de frutos no tratamento-controle era de 6%, e os tratamentos com AVG (125 e 250 mg L-1) aumentaram esta queda para 10%. Tratamentos com AVG retardaram substancialmente a maturação dos frutos da cultivar Gala, mas não da 'Fuji'. Na cultivar Gala, o atributo mais afetado foi a cor de fundo da casca, seguido, em ordem decrescente, pelo conteúdo de sólidos solúveis totais, índice de iodo-amido, cor vermelha da casca, firmeza de polpa e acidez titulável. Na cultivar Gala, apenas a retenção de firmeza de polpa foi significativamente aumentada com o aumento na concentração de AVG de 125 mg L-1 para 250 mg L-1. A concentração de 250 mg L-1 inibiu o crescimento final de frutos na cultivar Gala, mas não na 'Fuji'
    corecore