674 research outputs found
Equilibrium distributions in thermodynamical traffic gas
We derive the exact formula for thermal-equilibrium spacing distribution of
one-dimensional particle gas with repulsive potential V(r)=r^(-a) (a>0)
depending on the distance r between the neighboring particles. The calculated
distribution (for a=1) is successfully compared with the highway-traffic
clearance distributions, which provides a detailed view of changes in
microscopical structure of traffic sample depending on traffic density. In
addition to that, the observed correspondence is a strong support of studies
applying the equilibrium statistical physics to traffic modelling.Comment: 5 pages, 6 figures, changed content, added reference
Zero range model of traffic flow
A multi--cluster model of traffic flow is studied, in which the motion of
cars is described by a stochastic master equation. Assuming that the escape
rate from a cluster depends only on the cluster size, the dynamics of the model
is directly mapped to the mathematically well-studied zero-range process.
Knowledge of the asymptotic behaviour of the transition rates for large
clusters allows us to apply an established criterion for phase separation in
one-dimensional driven systems. The distribution over cluster sizes in our
zero-range model is given by a one--step master equation in one dimension. It
provides an approximate mean--field dynamics, which, however, leads to the
exact stationary state. Based on this equation, we have calculated the critical
density at which phase separation takes place. We have shown that within a
certain range of densities above the critical value a metastable homogeneous
state exists before coarsening sets in. Within this approach we have estimated
the critical cluster size and the mean nucleation time for a condensate in a
large system. The metastablity in the zero-range process is reflected in a
metastable branch of the fundamental flux--density diagram of traffic flow. Our
work thus provides a possible analytical description of traffic jam formation
as well as important insight into condensation in the zero-range process.Comment: 10 pages, 13 figures, small changes are made according to finally
accepted version for publication in Phys. Rev.
Probabilistic Description of Traffic Breakdowns
We analyze the characteristic features of traffic breakdown. To describe this
phenomenon we apply to the probabilistic model regarding the jam emergence as
the formation of a large car cluster on highway. In these terms the breakdown
occurs through the formation of a certain critical nucleus in the metastable
vehicle flow, which enables us to confine ourselves to one cluster model. We
assume that, first, the growth of the car cluster is governed by attachment of
cars to the cluster whose rate is mainly determined by the mean headway
distance between the car in the vehicle flow and, may be, also by the headway
distance in the cluster. Second, the cluster dissolution is determined by the
car escape from the cluster whose rate depends on the cluster size directly.
The latter is justified using the available experimental data for the
correlation properties of the synchronized mode. We write the appropriate
master equation converted then into the Fokker-Plank equation for the cluster
distribution function and analyze the formation of the critical car cluster due
to the climb over a certain potential barrier. The further cluster growth
irreversibly gives rise to the jam formation. Numerical estimates of the
obtained characteristics and the experimental data of the traffic breakdown are
compared. In particular, we draw a conclusion that the characteristic intrinsic
time scale of the breakdown phenomenon should be about one minute and explain
the case why the traffic volume interval inside which traffic breakdown is
observed is sufficiently wide.Comment: RevTeX 4, 14 pages, 10 figure
Cluster formation and anomalous fundamental diagram in an ant trail model
A recently proposed stochastic cellular automaton model ({\it J. Phys. A 35,
L573 (2002)}), motivated by the motions of ants in a trail, is investigated in
detail in this paper. The flux of ants in this model is sensitive to the
probability of evaporation of pheromone, and the average speed of the ants
varies non-monotonically with their density. This remarkable property is
analyzed here using phenomenological and microscopic approximations thereby
elucidating the nature of the spatio-temporal organization of the ants. We find
that the observations can be understood by the formation of loose clusters,
i.e. space regions of enhanced, but not maximal, density.Comment: 11 pages, REVTEX, with 11 embedded EPS file
Activin-A and Bmp4 Levels Modulate Cell Type Specification during CHIR-Induced Cardiomyogenesis
The use of human pluripotent cell progeny for cardiac disease modeling, drug testing and therapeutics requires the ability to efficiently induce pluripotent cells into the cardiomyogenic lineage. Although direct activation of the Activin-A and/or Bmp pathways with growth factors yields context-dependent success, recent studies have shown that induction of Wnt signaling using low molecular weight molecules such as CHIR, which in turn induces the Activin-A and Bmp pathways, is widely effective. To further enhance the reproducibility of CHIR-induced cardiomyogenesis, and to ultimately promote myocyte maturation, we are using exogenous growth factors to optimize cardiomyogenic signaling downstream of CHIR induction. As indicated by RNA-seq, induction with CHIR during Day 1 (Days 0–1) was followed by immediate expression of Nodal ligands and receptors, followed later by Bmp ligands and receptors. Co-induction with CHIR and high levels of the Nodal mimetic Activin-A (50–100 ng/ml) during Day 0–1 efficiently induced definitive endoderm, whereas CHIR supplemented with Activin-A at low levels (10 ng/ml) consistently improved cardiomyogenic efficiency, even when CHIR alone was ineffective. Moreover, co-induction using CHIR and low levels of Activin-A apparently increased the rate of cardiomyogenesis, as indicated by the initial appearance of rhythmically beating cells by Day 6 instead of Day 8. By contrast, co-induction with CHIR plus low levels (3–10 ng/ml) of Bmp4 during Day 0–1 consistently and strongly inhibited cardiomyogenesis. These findings, which demonstrate that cardiomyogenic efficacy is improved by optimizing levels of CHIR-induced growth factors when applied in accord with their sequence of endogenous expression, are consistent with the idea that Nodal (Activin-A) levels toggle the entry of cells into the endodermal or mesodermal lineages, while Bmp levels regulate subsequent allocation into mesodermal cell types
Impact of \u3cem\u3eMYH6\u3c/em\u3e Variants in Hypoplastic Left Heart Syndrome
Hypoplastic left heart syndrome (HLHS) is a clinically and anatomically severe form of congenital heart disease (CHD). Although prior studies suggest that HLHS has a complex genetic inheritance, its etiology remains largely unknown. The goal of this study was to characterize a risk gene in HLHS and its effect on HLHS etiology and outcome. We performed next-generation sequencing on a multigenerational family with a high prevalence of CHD/HLHS, identifying a rare variant in the α-myosin heavy chain (MYH6) gene. A case-control study of 190 unrelated HLHS subjects was then performed and compared with the 1000 Genomes Project. Damaging MYH6 variants, including novel, missense, in-frame deletion, premature stop, de novo, and compound heterozygous variants, were significantly enriched in HLHS cases (P \u3c 1 × 10−5). Clinical outcomes analysis showed reduced transplant-free survival in HLHS subjects with damaging MYH6 variants (P \u3c 1 × 10−2). Transcriptome and protein expression analyses with cardiac tissue revealed differential expression of cardiac contractility genes, notably upregulation of the β-myosin heavy chain (MYH7) gene in subjects with MYH6 variants (P \u3c 1 × 10−3). We subsequently used patient-specific induced pluripotent stem cells (iPSCs) to model HLHS in vitro. Early stages of in vitro cardiomyogenesis in iPSCs derived from two unrelated HLHS families mimicked the increased expression of MYH7 observed in vivo (P \u3c 1 × 10−2), while revealing defective cardiomyogenic differentiation. Rare, damaging variants in MYH6 are enriched in HLHS, affect molecular expression of contractility genes, and are predictive of poor outcome. These findings indicate that the etiology of MYH6-associated HLHS can be informed using iPSCs and suggest utility in future clinical applications
Spring-block model for a single-lane highway traffic
A simple one-dimensional spring-block chain with asymmetric interactions is
considered to model an idealized single-lane highway traffic. The main elements
of the system are blocks (modeling cars), springs with unidirectional
interactions (modeling distance keeping interactions between neighbors), static
and kinetic friction (modeling inertia of drivers and cars) and spatiotemporal
disorder in the values of these friction forces (modeling differences in the
driving attitudes). The traveling chain of cars correspond to the dragged
spring-block system. Our statistical analysis for the spring-block chain
predicts a non-trivial and rich complex behavior. As a function of the disorder
level in the system a dynamic phase-transition is observed. For low disorder
levels uncorrelated slidings of blocks are revealed while for high disorder
levels correlated avalanches dominates.Comment: 6 pages, 7 figure
Gaming with eutrophication: Contribution to integrating water quantity and quality management at catchment level
The Metropolitan Region of Sao Paulo (MRSP) hosts 18 million inhabitants. A complex system of 23 interconnected reservoirs was built to ensure its water supply. Half of the potable water produced for MRSP's population (35 m3/s) is imported from a neighbour catchment, the other half is produced within the Alto Tietê catchment, where 99% of the population lives. Perimeters of land use restriction were defined to contain uncontrolled urbanization, as domestic effluents were causing increasing eutrophication of some of these reservoirs. In the 90's catchment committees and sub committees were created to promote discussion between stakeholders and develop catchment plans. The committees are very well structured "on paper". However, they are not very well organised and face a lack of experience. The objective of this work was to design tools that would strengthen their discussion capacities. The specific objective of the AguAloca process was to integrate the quality issue and its relation to catchment management as a whole in these discussions. The work was developed in the Alto Tietê Cabeceiras sub-catchment, one of the 5 sub catchments of the Alto-Tietê. It contains 5 interconnected dams, and presents competitive uses such as water supply, industry, effluent dilution and irrigated agriculture. A RPG was designed following a companion modelling approach (Etienne et al., 2003). It contains a friendly game-board, a set of individual and collective rules and a computerized biophysical model. The biophysical model is used to simulate water allocation and quality processes at catchment level. It articulates 3 modules. A simplified nutrient discharge model permits the estimation of land use nutrient exportation. An arc-node model simulates water flows and associated nutrient charges from one point of the hydrographical network to another. The Vollenweider model is used for simulating specific reservoir dynamics. The RPG allows players to make individual and collective decisions related to water allocation and the management of its quality. Impacts of these decisions are then simulated using the biophysical model. Specific indicators of the game are then updated and may influence player's behaviour (actions) in following rounds. To introduce discussions on the management of water quality at a catchment level, an issue that is rarely explicitly dealt with, four game sessions were implemented involving representatives of basin committees and water and sanitation engineers. During the game session, the participants took advantage of the water quality output of the biophysical model to test management alternatives such as rural sewage collection or effluent dilution. The biophysical model accelerated calculations of flows and eutrophication rates that were then returned to the game board with explicit indicators of quantity and quality. Players could easily test decisions impacting on qualitative water processes and visualize the simulation results directly on the game board that was representing a friendly, virtual and simplified catchment. The Agualoca game proved its ability to turn complex water processes understandable for a non totally initiated public. This experience contributed to a better understanding of multiple-use water management and also of joint management of water quality and quantity. (Résumé d'auteur
Long-lived states in synchronized traffic flow. Empirical prompt and dynamical trap model
The present paper proposes a novel interpretation of the widely scattered
states (called synchronized traffic) stimulated by Kerner's hypotheses about
the existence of a multitude of metastable states in the fundamental diagram.
Using single vehicle data collected at the German highway A1, temporal velocity
patterns have been analyzed to show a collection of certain fragments with
approximately constant velocities and sharp jumps between them. The particular
velocity values in these fragments vary in a wide range. In contrast, the flow
rate is more or less constant because its fluctuations are mainly due to the
discreteness of traffic flow.
Subsequently, we develop a model for synchronized traffic that can explain
these characteristics. Following previous work (I.A.Lubashevsky, R.Mahnke,
Phys. Rev. E v. 62, p. 6082, 2000) the vehicle flow is specified by car
density, mean velocity, and additional order parameters and that are
due to the many-particle effects of the vehicle interaction. The parameter
describes the multilane correlations in the vehicle motion. Together with the
car density it determines directly the mean velocity. The parameter , in
contrast, controls the evolution of only. The model assumes that
fluctuates randomly around the value corresponding to the car configuration
optimal for lane changing. When it deviates from this value the lane change is
depressed for all cars forming a local cluster. Since exactly the overtaking
manoeuvres of these cars cause the order parameter to vary, the evolution
of the car arrangement becomes frozen for a certain time. In other words, the
evolution equations form certain dynamical traps responsible for the long-time
correlations in the synchronized mode.Comment: 16 pages, 10 figures, RevTeX
- …
