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Cluster formation and anomalous fundamental diagram in an ant-trail model
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A recently proposed stochastic cellular automaton mgdePhys. A 35, L5732002], motivated by the
motions of ants in a trail, is investigated in detalil in this paper. The flux of ants in this model is sensitive to the
probability of evaporation of pheromone, and the average speed of the ants varies nonmonotonically with their
density. This remarkable property is analyzed here using phenomenological and microscopic approximations
thereby elucidating the nature of the spatiotemporal organization of the ants. We find that the observations can
be understood by the formation of loose clusters, i.e., space regions of enhanced, but not maximal, density.
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[. INTRODUCTION over it will help us to get a better understanding of the mi-
croscopic structure of the stationary state. A heuristic homo-

Particle-hopping models have been used widely in the regeneous mean-field theory, which was sketched briefly in
cent years to study the spatiotemporal organization in sysRef. [12], is presented in detail in Sec. V. This theory pro-
tems of interacting particles driven far from equilibrium duces better results than the cluster approximation. However,
[1-6]. Often such models are formulated in terms of cellularit accounts only for thejualitativefeatures of the fundamen-
automata(CA) [7]. Examples of such systems include ve- tal diagram obtained by cpmputer simulations. Therefore, in
hicular traffic[8—11] where the vehicles are represented bySec. VI, we present a different approach that leads to the
particles, while their mutual influence is captured by the in-Main results. In this section, we have computed some quan-
terparticle interactions. Usually, these interparticle interaciities that provide information as to the state of occupation of
tions tend to hinder their motions so that theerage speed the site immediately in front of an ant. These quantities not
decreasesnonotonicallywith the increasing density of the Only help us in identifyingthree regimes of density, with -
particles. In the usual form of the fundamental diagram, i.e.corresponding characteristic features, but also provide in-
the flux-density relation, this nonmonotonicity correspondsSights that we exploit in developing a different scheme for
to the existence of an inflection point. In a recent pdpét, analytical calculations. The results o_f th|§ different scheme,
we have reported a counter example, motivated by the flux dhat we call “loose-cluster approximationtfor reasons
ants in a trai[13], where, the average speed of the particlesVhich will be clear in Sec. V|| are in reasonably goaglian-
varies nonmonotonically with their density because of thditative agreement with the data obtained from computer
coupling of their dynamics with another dynamical variable.Simulations. The effects of replacing the parallel updating by
In Ref. [12] we presented numerical evidence in support offandom sequential updating is explored in Sec. VII. The re-
this unusual feature of the model and indicated the physica?uns are summ_arlzed and conc_lusmns are drawr! in Sec. VIII.
origin of this behavior in terms of a heuristic mean-field In two Appendices some details of the calculations for the
argument. In this paper, we present the corresponding dé&luster-theoretic approaches are given.
tailedanalytical calculations, together with further numerical
results, that provide deep insight into the model.

The paper is organized as follows: The ant-trail model
[12] is defined in Sec. Il and compared with some closely The ants communicate with each other by dropping a
related models in Sec. Ill. Section IV presents results obehemical(generically calledpheromongon the substrate as
tained from a microscopic cluster approximation. Althoughthey crawl forward[14—-16. Although we cannot smell it,
this approach does not reproduce the observed sharp croske trail pheromone sticks to the substrate long enough for

the other following sniffing ants to pick up its smell and
follow the trail. Ant trails may serve different purposes
*Permanent address: Department of Applied Mathematics and Indrunk trails, migratory routgsand may also be used in a
formatics, Ryukoku University, Shiga, Japa@mail address: different way by different species. Therefore, one-way trails
knishi@rins.ryukoku.ac.jp  Electronic address: kn@thp.uni- are observed as well as trails with counterflow of ants.

Il. THE ANT-TRAIL MODEL

koeln.de In Ref.[12], we developed a particle-hopping model, for-
TElectronic address: debch@iitk.ac.in mulated in terms of stochastic JA], which may be inter-
*Electronic address: as@thp.uni-koeln.de preted as a model of unidirectional flow in an ant trail. As in
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q Q q Q if oy 4(t)=1,
A A A probability= ; N (H=0 &)
s@ [ XIX X ants T
o) |® |@©ee e |o pheromone where, to be consistent with real ant trails, we assume
<Q.
(b) Stage II: evaporation of pheromonest each celli
S+1) [ X x| Tx X|  ans occupied by an ant after stada pheromone will be created,
s (@] |elee]e o o pheromone <"
\ \ | | o(t+1)=1 if S(t+1)=1. @
f f f f
On the other hand, any “free” pheromone at a sit@ot
S+ [X X X > ants occupied by an ant will evaporate with the probabifitger
s(t+])| @ oo ° ° ° pheromone unit time, i.e., ifS(t+1)=0, oi(t)=1, then
0  with probability f,
FIG. 1. Schematic representation of typical configurations; it og(t+1)= P y 3
i(t+1) , . ()
also illustrates the update procedure. Top: configuration at tjime 1 with probability 1—f.

i.e., beforestagel of the update. The nonvanishing hopping prob- .
abilities of the ants are also shown explicitly. Middle: configuration Note that the dynamics conserves the nuntberf ants, but

after one possible realization stage | Two ants have moved com- 1Ot the number of pheromones.

pared to the top part of the figure. Also indicated are the phero- T he rules can be written in a compact form as the coupled
mones that may evaporate in stage Il of the update scheme. Bottorgquations

Configurationafter one possible realization stage Il Two phero- _ .

mones have evaporated and one pheromone has been created due to Si(hL 1)= Si(t) +min i —l(t)'si —1(H),1- Sj(t)]

the motion of an ant. —min[ nj(t),Sj(t),l— Sj+1(t)], (4)

Ref. [12], rather than addressing the question of the emer- oj(t+1)=maxS§;(t+1),min oj(t),&(1)]), (5)
gence of the ant trail, we focus attention here on the traffic of

ants on a trail which has already been formed. Furthermorévhere and 7 are stochastic variables defined byt)=0
we have assumed unidirectional motion. The effects of counwith the probabilityf and &;(t)=1 with 1—f, and #;(t)
terflow, which are important for some species, will be inves-=1 with the probabilityp=q+(Q—q)o;.4(t) and »;(t)
tigated in the future. Each site of our one-dimensional ant=0 with 1—p. This representation is useful for the devel-
trail model represents a cell that can accomodate at most o@ment of approximation schemes.

ant at a timesee Fig. L The lattice sites are labeled by the

indexi (i=1,2,...L); L being the length of the lattice. We I1l. COMPARISON WITH OTHER MODELS

associate two binary variableg and o; with each sitei,
where S; takes the value 0 or 1 depending on whether the[h
cell is empty or occupied by an ant. Similarky,=1 if the
cell i contains pheromone; otherwise,=0. Thus, we have
two subsets of dynamical variables in this model, namely,
{S(O}=(S1(1).Sx(1), ... .Si(t), ... .S(t)) and {o(t)}
=(o1(t),05(1), ...,0i1), ...,0.(t)). The instantaneous
state(i.e., the configurationof the system at any time is
specified completely by the sefS},{c}).

Since a unidirectional motion is assumed, ants do no
move backward. Their forward-hopping probability is higher
if it smells pheromone ahead of it. The state of the system is
updated at each time step two stagesin stage |, ants are The NS mode[17] is the minimal particle-hopping model
allowed to move. Here the subde&(t+ 1)} at the time step for vehicular traffic on freeways. In the general version of
t+1 is obtained using the full informatio{S(t)},{c(t)}]  the NS model the particles, each of which represents a ve-
at timet. Stage Il corresponds to the evaporation of phero-icle, can have a maximum speed\tf,,. However, by the
mone. Here only the subséir(t)} is updated so that at the term “NS model” in this paper, we shall always mean the
end of stage Il, the new configuratiof S(t+1)},{o(t NS model withV,,,,=1, so that each particle can move for-
+1)}] at timet+1 is obtained. In each stage, the dynamicalward, by one lattice spacing, with probability;s if the lat-
rules are appliednh parallel to all ants and pheromones, re- tice site immediately in front is empty.
spectively. The most important quantity of interest in the context of

(a) Stage |: motion of antsAn ant in celli that has an flow properties of the traffic models is tfiendamental dia-
empty cell in front of it, i.e..S(t)=1 andS,,,(t)=0, hops gram i.e., the flux-versus-density relation, where flux is the
forward with product of the density and the average speed. For a hopping

In this section, we compare the ant-trail model first with
e Nagel-Schreckenbei@S) model[17] to show that in
various limits it reduces to the NS model with different hop-
ping probabilities. This comparison also helps in formulating
the task of our analytical calculation from alternative per-
spectives. We also compare the ant-trail model with some
other models all of which share a common feature: the dy-
namics of the “particles” are coupled to another dynamical
Yariable.

A. The Nagel-Schreckenberg model

036120-2



CLUSTER FORMATION AND ANOMALOUS FUNDAMENTAL . .. PHYSICAL REVIEW E 67, 036120 (2003

Note that the expressiof®) remains invariant under the
interchange op and 1- p; this “particle-hole” symmetry of
the NS model leads to a fundamental diagram that is sym-
metrical aboup=1/2. In contrast, the fundamental diagrams
of our ant-trail model[see Fig. 2b)] do not possess this
symmetry except in the special casesfef0 andf=1. As
explained in Ref[12], in the two special cases=0 andf
=1 the ant-trail model becomes identical to the NS model
with qys= Q andqys=(q, respectively, and, hence, recovers
the particle-hole symmetry in these two special limits.

The fluxF and the average spe¥df vehicles are related
by the hydrodynamic relatiofr=pV. The density depen-
dence of the average speed in our ant-trail model is shown in
Fig. 2@. Over a range of small values &f it exhibits an
anomalous behavior in the sense that, unlike common ve-
hicular traffic,V is not a monotonically decreasing function
of the densityp. Instead a relatively sharp crossover can be
observed where the speéttreaseswith the density. In the
usual form of the fundamental diagraiffux versus density
this transition leads to the existence of an inflection point
[Fig. 2(b)]. Assuming that the flux in ant-trail model is given
by the equation6) with a an effective hopping probability
Jeii(p), Which depends on the ant density we can extract
Jeii(p) by fitting the observed flux withy<(p), i.e., from

0.25

0.2

0.156

Flux

0.1

0.05

F(1-F)

Qeﬁ:m- (7)

o
bt

The effective hopping probabilitg is plotted as a function
of p for several different values of the parametdn Fig.
2(c). In the limit p—0, the pheromone dropped by an ant
gets enough time to completely evaporate before the follow-
ing ant comes close enough to smell it; therefore, the ants’
hopping probability is almost alwayps On the other hand, in
the opposite limito— 1, the ants are too close to miss the
smell of the pheromone dropped by the leading ant unless
0.2 0.4 0.6 0.8 the pheromone evaporation probability is very high; conse-
Density quently, in the limit the ants hop most often with the prob-
©) ability Q.
A proper theory of the ant-trail model should reproduce
FIG. 2. The average speed), flux (b), and effective hopping the nonmonotonic variation of the average speed with den-
probability (c) of the ants, extracted from computer simulation data,sity [shown in Fig. 2a)] and, hence, the unusual shape of the
are plotted against their densities for the parame®@rs0.75,  fundamental diagrarfshown in Fig. 2b)]. In this paper, we

q=0.25. The discrete data points corresponding fo  deyelope theories, which, indeed, reproduce these features.
=0.0005 (¢), 0.001 ©), 0.005 @), 0.01 (), 0.05 @),

0.10 (X), 0.25 (+), and 0.50 £) have been obtained from com-

puter simulations; the lines connecting these data points merely B. Models with coupled dynamical variables

serve as the guide to the eye.(w and(b), the case$=0 andf  n15dels with coupled dynamical variables have been con-

=1 are also displayed, which correspond to the NS model Withsijereq earlier, for example, in the context of reaction-

Ger=Q andg, respectively. controlled diffusion[19]. However, in this section, we com-

probability qys at a given densitp=N/L, the exact flux Pare the ant-trail model with some more (;Iosely related

F(p) in the NS model is given bi8,18] mo?gls where the movement of the particles is totally asym-
metric.

Eff. hop. probability
© o o
-y (9] o

o
w

1 In the ant-trail model developed in R¢R0] the particles,
Frns(p)=5[1=V1-4anep(1-p)], (6)  which represent the ants, move in a “ground-potential land-
scape” created by the pheromones. A similar approach has
which reduces td-yg(p) =min(p,1—p) in the deterministic also been used for studying the human trails of pedestrians
limit gnys=1. [20].
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In the CA model introduced in Ref21], for pedestrian 0.25
dynamics, the floor fields, albeitirtual, are analogs of the
pheromone field$o} in the ant-trail model. However, these 0.2
floor fields are “bosonic” in the sense that the variabte
which is by definition non-negative, has an otherwise unre- x 015
stricted range. In contrast, in our ant-trail model the phero- & 04
mone field is “fermionic” as the variabler, representing
pheromones, can take only two values, namelyalBsence 0.05
and 1 (presencg ,
The ant-trail model we propose here is closely related to o

the bus-route modé¢R2] with parallel updating23]. In fact,

as we will argue now, the ant-trail model and the bus-route
model are the two opposite limits of the same generalized FiG. 3. Fundamental diagrams in the2)-cluster approxima-
version of the NS model of vehicular traffic. The ants are th&jon. The hopping probabilities a@=0.75 andy=0.25. The same
analogs of the buses while the cells accomodating ants in th§/mbols in Fig. 2 and in this figure correspond to the same values
ant-trail model are analogs of the bus stops in the bus-routef f.

model. Both the models involve two dynamical variables; the

variablesSando in the ant-trail model are the analogs of the F=0esP(10). 9
variables representing the preserioe absenceof bus and

passengers, respectively, in the bus-route model. Just as the Appendix A, it is shown that within the (21)-cluster
number of buses is conserved in the bus-route model, thepproximation considered heré,can be obtained from the
number of ants is also conserved in our ant-trail model. Simisolution of the cubic equation

larly, the dynamical variable representing the presefre

absence of pheromone is not conserved in the ant-trail (Q-a)(1-hHF _

model just as the number of passangers is not conserved by (1-p)f+(1-F)F
the dynamics of the bus-route model. However, there is a ) o )
crucial difference between these two models; in the bus-rout&he result is shown in Fig. 3. For all valuesfdf the range
model Q<q (as the buses musiow downto pick up the 0<f<1, the peak of the flux appears @t 1/2, in qualita-
waiting passengerswhereas in our ant-trail moded>q  five agreement with the gen_eral _trend observed in Fig. 2. But,
(because an ant is more likely to move forward if it smellsthis (2+1)-cluster approximation cannot reproduce the
droppedby ants(whereas passengers arrive at the bus stop8f the three case®=q, =0, andf=1, the solution of Eqg.
independent of the busesvhile passengers apicked uppy ~ (10) is identical to Eq.(6) with either qys=0 or qys=Q.

' Density '

F2—F+p(1-p)| q+

0. (10

buses(whereas pheromones evaporate indepenqknﬂy Next, let us defInEP(m) as the probablllty of ﬁnd-ingn'Size -
cluster ofantsin a stationary state. Here the 1-size cluster is
IV. CLUSTER APPROXIMATION defined by---010---, and amssize cluster consists of a

string of m of 1 between 0s. The distribution of cluster sizes
The simulation results indicate that correlations betweeris then given by(see Appendix A
different ants as well as between ants and pheromone play an

important role. We, therefore, develop a microscopic “(2 P(m)= P(10) (1—P(10)/p)™* 11
+1)"-cluster approximatiori8,18,24 that allows the inclu- P 1-(1-P(10)/p)t

sion of correlations between the occupation variables

S;-1(t) and §;(t) of two successive sitejs-1 andj (corre- In Fig. 4, we illustrate the graphs &f(m) given by Eq.

sponds to “2”) and that between the variabl&(t) and  (11) and corresponding numerical data. There is a sharp peak
aj(t) at the same sitp(corresponds to “1} in an exactway. at m=1 at all the densities and the distributions are expo-
The central quantities of the (21)-cluster approxima- nential. This means that large clusters of ants are rarely seen

tion are the eight variables in this model. Moreover, Eq11) fits well with the numerical
data for allp>0.5, but it underestimates the simulations data
S (1) at lower densities. _ _ _
P(S,-1()S(1)), p( ! ) (8) In order to get a better understanding of the microscopic
aj(t) structure of the stationary state, we also calculate the prob-

abilities of finding an anP,, pheromoneP,, and nothing

corresponding to all possibilities[ S;_y(t),S;(t),o;(t) Py in front of an ant:

€{0,1}] of finding the corresponding configurations®and P(10)

o at a time. In Appendix A, we will show how the master P,=1-——, (12)

equation for these quantities can be derived from micro-

scopic considerations and how the resulting equations can be

solved consistently. _ P(10 (O) (13)
The flux is given by P p(l-p) '
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FIG. 4. Cluster-size distribution fop=0.1, 0.3, 0.5, and 0.8. 1 1
Theoretical curvdsolid line) given by Eq.(11) underestimates the T .08
simulation (broken curve at densitiesp<<0.5. Other relevant pa- % 06 % 06
rameters ar@=0.75, q=0.25, andf=0.005. _‘.é" 04 ‘,é" 04l
202 . O g.2i% .
1 P(100 (O o — 5 0 DT
Po=—P(10)————P ] (14) 0 02 04 06 08 1 0 02 04 06 08 f
) p(l—p) |1 Density Density
S T 1
Note that the sum of these three probabilities is 1. The results_ 4 ¢ 08
are shown in Fig. 5. We see that only for small and Iarge% 06 %o.a
values off (e.g.,f=0.0001 andf>0.1), the results of the S04 S04
(2+1)-cluster approximation are in good quantitative agree- 0.2| /4 o2
ment with the corresponding numerical results. o0 S oa 0% 0204 TSR
The results derived in this section indicate that tiero- “ Densty Density

scopiccluster approximation is not able to capture the corre-
lations which lead to the sharp crossover observed for small FIG. 5. Probability of finding an anfsolid curve, pheromone
evaporation probabilitie. A systematic extension of this (fine broken curvg and nothing(coarse broken curyen front of
approximation scheme is, in principle, possible and moren ant, with parameters=0.000] . ..,0.5, in the (2+1)-cluster
correlations could be taken into account. However, this apapproximation. Numerical data, obtained from computer simula-
proach will become quite cumbersome. In Appendix B, wetions, are also plottefants @), pheromone but no antY), and
have also tried to extend the results in this section by usingothing (X)]. These figures demonstrate how the predictions of the
the stochastic cluster approaf®6], but the results are not (2+1)-cluster approximation deviate from simulation data.
much improved. In the following we, therefore, develope a. ) ) o
phenomenologicahean-field theory that tries to capture the in this zeroth level MFT, the effective hopping probability is
essential effects in a simple way. given by

70=Q(1— )" +q{1—-(1-)"V}. (15)

V. HOMOGENEOUS MEAN-FIELD THEORY (HMFT)

In the mean-field approximation, we replacédy the corre-
sponding exact global mean separatigr) =(1/p)—1 be-
tween successive ants, i.e., we are assuming the existence of

In this mean-field theoryMFT), let us assume that all the
ants move with the mean spe¥dhat depends on the density
p of the ants as well as ofy although, to begin with, the h tate. M Nl —1 th
nature of these dependences are not known we will obtaif 'oMmogeneoustate. VIOreover, SINCY max € average
these self-consistently. Unlike the usual approach of 1—c|ustesfpeedv IS |dent|cz_;1| to the effective hopping probability, and
MFT (i.e., factorization of the probabilities of configurations we get the equation
in terms of 1-cluster probabilitigsthe HMFT is aself-
consistentMFT that, as we demonstrate later in this paper,
succeeds in capturing part of the correlations, albeit in a
heuristic manner.

Let us consider a pair of ants having a gapnddites in
between. We designate the leading ant of this pair as the Iea{
ant (LA) and the other as the following affA). The prob-
ability that the site immediately in front of the FA contains
pheromone is (+f)™V. Heren/V is just the average time fact that, in the low-density regime, the pheromone dropped
passed since the LA has dropped the pheromone. Thereforlgy an ant gets enough time to completely evaporate before

7]0(1) o _
=(1-f)¥r 1, 16
0-q (1-1) (16)
which is to be solved self-consistently for getting as a
antion of p for a givenf.

Before solving Eq(16) numerically, note that this equa-
tion implies that, forgiven f{ IimwonO:q; this reflects the
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FIG. 6. The fundamental diagram, obtained in the HMFT, is
plotted against density ia) while the corresponding effective hop-
ping probability 74 is shown in(b). The predictions of the HMFT
are shown by the continuous curves; the same symbols in Figs.
and 6 correspond to the same values.dfhe broken curve iia),
corresponding to the computer simulation data ffer0.005 taken
from Fig. 2a), highlights the limitations of the HMFT in making ing some subtle concepts of “clustering,” we replot these
quantitativelyaccurate predictions. probabilities for only two specific values 6fn Fig. 7; these
data have been obtained from computer simulations of our
ant-trail model.

) ) ) ) There is a flat part of the curves in Fig. 7 in the low-
density situations where the ants are too close to miss th&ensity regime; from now onwards, we shall refer to this

smell of the pheromone dropped by the LA unless the pherdregion as “region 1.” Note that in this region, in spite of low
mone evaporation probabilityis very high. Similarly, from  yengiry of the ants, the probability of finding an ant in front
Eq. (16), we get, forgivenp, lim,_,70=q and im_ ;70 o another is quite high. This implies the fact that ants tend to
=Q, which are also consistent with intuitive expectations. form a cluster. On the other hand, cluster-size distribution
The solutions of Eq(16), calculated numerically by using (Fig. 4), obtained from our computer simulations, shows that
Newton method, are plotted in Fig(l§ and the correspond- the probability of finding isolated ants are always higher than
ing fundamental diagram is shown in Figag Clearly, the  that of finding a cluster of ants occupying nearest-neighbor
HMFT captures thequalitative features of the ant-trail gjtes.
model. However, there are significaguantitative differ- These two apparently contradictory observations can be
ences between the predictions of this theory and the comMzeconciled by assuming that the ants form loose clusters in
puter simulation data, especially, the sharp crossover arour{ﬁe region 1. The term loose means that there are small gaps

p=0.5 (Fig. 2). One possible reason is that the HMFT as-jy petween successive ants in the cluster, and the cluster
sumes a rather homogeneous stationary state. Therefore, |kbks jike an usual compact cluster if it is seen from a dis-

the following section, we will develope an approximation (5nce(Fig. 8). In other words, a loose cluster is just a loose
scheme that emphasizes the formation of a special kind Afgsembly of isolated ants. Thus it corresponds to a space
cluster in the steady state. region with density larger than the average dengifybut
smaller than the maximal densityp€1) of a compact
cluster.

Let us consider again the probabiliti®g, P,, andP, Let us assume that the loose cluster becomes stationary
defined in the preceding section. For the purpose of clarifyafter sufficient time has passed. Then the hopping probability

FIG. 7. Numerical results for the probabilities of finding an
ant (@), pheromone but no anfY), and nothing &) in front of an
nt are plotted against the density of the ants. The parameters are
=0.005[in (@] andf=0.01[in (b)]. See also Fig. 5.

the FA comes close enough to smell it. Equatid®) also
implies that Iir‘r}Han:Q; this captures the sufficiently high

VI. “LOOSE” CLUSTER APPROXIMATION  (LCA)
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FIG. 8. Schematic explanation of the loose clustéris the
hopping probability of ants inside the loose cluster arid that of
the leading ant.

of all the ants, except the leading one, is assumed tbl,be
while that of the leading one Is(see Fig. 8 the values oH

PHYSICAL REVIEW E 67, 036120 (2003

dence of the probability to find an ant in front of a cell
occupied by an anfsee Fig. 7.

Considering these facts, we finally obtain the following
equations foth and H:

h A\ H
)=(1—f)'—',(—H q) =(1-H", (@19

Q—q

h—q
Q—q

wherel is the length of the cluster given by
h
I=pL+(pL-D . (19

and p andL are density and the system size, respectively.
These equations can be applied to the region 1 and 2, and

and h are determined self-consistently, just as the effectivesolved simultaneously by the Newton method.

hopping probability in the HMFT was estimated self-

Total flux in this system is then calculated as follows. The

consistently in Sec. V. Before beginning the detailed analyeffective densityp. in the loose cluster is given by

sis, let us consider the properties ldfand h. If f is small
enough, therH will be close toQ because the gap between

ants is quite small. On the other hand, if the density of ants is

low enough, them will be very close tag because the phero-

mone dropped by the leading ant would evaporate when th

following ant arrives there.

1

Pett™ 13 hiH- 20

%herefore, considering the fact that there are no ants in the

Next we determine the typical size of the gap betweerP2't Of the lengtiL —I, total flux F is
successive ants in the cluster. We will estimate this by con-

sidering a simple time evolution beginning with an usual

compact clustefwith local densityp=1) without any gap in

between the ants. Then the leading ant will move forward by

one site over the time intervalt/ This hopping occurs re-

peatedly and in the interval of the successive hopping, the

number of the following ants that will move one step-ish.
Thus, in the stationary state, stringsompact clustejsof

length H/h, separated from each other by one vacant site,

will produced repeatedly by the anfsee Fig. 9. Then the
average gap between ants is

[(H/h)—1]x0+1x1 h
H/h THY

(17

which is independent of the densipyof ants. Interestingly,

I
F=f(Hpen), (21)
wheref(H,pqx) is given by
1
f(H.pe) = 5 (1= V1—4Hper(1—per). (22

Above the density 1/2, ants are assumed to be uniformly
distributed, in which a kind of MFT works well. We call this
region as region 3. Thus, we have three typical regions in
this model. In region 3, the relatiad =h holds because all
the gaps have the same length, i.e., the state is homogeneous.
Thush is determined by

the density-independent average gap in the LCA is consistent

with the flat part(i.e., region } observed in computer simu-
lations(Fig. 7). In other words, the region 1 is dominated by
loose clusters.

h—q

Q-q @3

h
) =(1-fH)¥ 1,

Beyond region 1, the effect of pheromone of the last ant
becomes dominant. Then the hopping probability of leadingvhich is the same as our previous paper, and flux is given by
ants becomes large and the gap becomes wider, which wifl(h,p). It is noted that if we pup=1/2 andH = h, then Eq.
increase the flow. We call this region as region 2, in which(18) coincides with Eq(23).
the looser cluster is formed in the stationary state. It can be We can focus on the region 1 by assumimg q in Eq.
characterized by a negative gradient of the density depern(18). Under this assumption, we can easily see that the flux-

OW@OQ

density relation becomes linear. In Fig.(&0 the two theo-
retical lines are almost the same, and the gradient of numeri-
cal results are also similar among these value§ which is
quite similar to the theoretical one. In Fig. (b, the results
obtained from Eq.(18) in the regionp<1/2 are shown.

FIG. 9. The stationary loose cluster. The average gap betweeAbove this value of density, Eq23) is used. The jointed

ants becomeb/H, which is irrelevant to the density of ants.

curve fits quite well the numerical one.
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02} =0.005 ---- RN 0.175
f=0.01 _— / 0.15
045] LCA (h=a) 0.125
x
3 =S 0.1
w o4 " 0075
0.05
0.05
2 0.025
0 0
0 02 0.4 06 0.8 0 0.2 04 06 0.8 1
Density Density
@ FIG. 11. The flux of the ants, in the ant-trail model wiindom
0.25 sequential updatingplotted against their densities for the param-
LCA - etersQ=0.75 andq=0.25.
02 Simulation — - -
whether the site in front contains or does not contain phero-
. 015 mone.
2 (3) If the ant at the randomly chosen site moves forward,
0.1 a pheromone is created at the new site without making any
attempt to let the pheromone left behind in its old position
0.05 (i.e., at the randomly chosen sit® evaporate.
The flux of the ants in this model is plotted against their
o 02 0.4 06 08 density in Fig. 11; the qualitative features of the curves, in-

Density cluding the sharp crossover from free to congested state, are
(b) similar to those in the original version of this model with
parallel updating. From these observations we conclude that,
FIG. 10. (a) Fundamental diagrams of the linear regidiold  unlike the NS model, the correlations responsible for the
line) together with numerical results with parameters0.005(bro- nonmonotonic variation of the average speed with the den-
ken curve andf=0.01(solid curve. (b) The fundamental diagram  sjty of the ants are not artefacts of the parallel update scheme

(f:0005) of the combination of LCA and E(Q3) (SOIId CUrVé. but genuine nontrivial features of the model.
The broken curve is the numerical result for 0.005. The system

size isL=2350.
VIIl. CONCLUDING DISCUSSIONS

VII. ANT-TRAIL MODEL WITH RANDOM-SEQUENTIAL A stochastic cellular automaton model of an ant trail,
UPDATING which we have proposed recenfti2], has been investigated
in detail, both analytically as well as numerically, in this

updating schemes are known to giye rise to nontri\{ial differ,ndamental diagram. This anomalous shape of the funda-
ences. For example, the correlations observed in the Ngental diagram is a consequence of the nonmonotonic varia-
model[17] with parallel dynamics an®¥,,,,=1 totally dis-  tion of the average speed of the ants with their density in an

appear when the parallel updating scheme is replaced by rafhtermediate range of the rate of pheromone evaporation.

dom sequential updating. In contrast, the updating schemghese unusual features of the ant-trail model have been ana-
does not make much of difference in the bus-route modelyzed in this paper using various analytical approaches and
[22,23. Therefore, in this section, we examine the effects ofcomputer simulations.

replacing the parallel updating by random sequential updat- It is shown that the homogeneous mean-field approxima-

ing, particularly on the unusual features of the fundamentations are able to capture some of the qualitative features ob-

diagram. served in the computer simulations. However, these approxi-
In the ant-trail model with random sequential updating,mations cannot account for the quantitative data. Therefore,

the updating of the system is done the following way: we have analyzed the spatiotemporal organization of the ants
(1) A site is choosen randomly. and pheromone in the stationary state. This provided some
(29 If there is no ant, but a pheromone, at the chosen siténsights, which we have utilized to develope a different

this is allowed to evaporate with probability scheme of calculations that we call loose-cluster approxima-
(2b) On the other hand, if there is an ant at the chosertion.

site, the usual motion update is dofiee., it cannot move By studying appropriate correlation functions, we were

forward if the site in front is occupied by another ant; other-able to distinguish three different regimes of density. At low
wise, it moves forward with probabilitQ) or q depending on  densities(region 1), the behavior is dominated by the exis-
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tence of loose clusters that are formed through the interplay __ P(00)
between the dynamics of ants and pheromone. In region 2, P(00)= WP(OO)
occuring at intermediate densities, the enhancement of the
hopping probability due to pheromone is dominant. Finally, P(10)
in region 3, at large densities the mutual hindrance against + m(l—%ﬁw(oo)
the movements of the ants dominates the flow behavior lead-
ing to a homogeneous state similar to that of the NS model. P(00) P(10)
We have seen that the observed effects persist for random * P(00)+ P(10) P(0D) P(10)+ P(11) Qeff
sequential updating. For this case, we also expect that exact
results can be achieved by using the matrix-product tech- P(10)
nique [4,26]. Extensions of this model, including counter- +m(l_qeﬁ)
flow and random sequential dynamics, will be reported in the B(10
future.
*PODB I+ p(1D) %t atd
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whereP(00) is P(00) of the next time step, i.e., at the time

This work was supported in part by the Alexander vonstept+ 1, while the probabilities on the right-hand side refer
Humboldt FoundatiortD.C.). to the time step. The four terms in the right-hand side rhs of
Eq. (A7) comprise all the configurations and processes that
give rise to the configuration§_,S;)=(00) in the next
time step. Here we pi(00)=P(00) in Eq.(A7) in order to

In this appendix, we provide details for tli2+1)-cluster  obtain the stationary solution fd?(00). Then we have
approximation scheme developed in Sec. IV. There we have

APPENDIX A: (2+1)-CLUSTER APPROXIMATION

introduced the eight dynamical variables, &8), which al- (1—Qe) P(10)2

low to take into account correlations between occupation P(OO)=W. (A8)
numbers of consecutive sites and between occupation num-

bers of ants and pheromone. Thus substituting Eq(A8) into Eq. (A5) using Eq.(9), we

These variables are not independent. Instead, we can inpbtain
mediately write down the following six equations:

F2—F +defp(1—p) =0. (A9)
P(10)=P(01), Al . . o
(10=P(0Y) (A1) Similarly, the master equation fm"(g) is given by
Pl—o A2 PO——P(OO) PO 1-f
o/ (A2) 1/~ P(00)+ P(10) 10
P(10) 0
P(00)+P(01)+P(10+P(11) =1, (A3) +mp 1 (1—Qep)(1—1)
1 P(10)
0 0 1 1 Oert _
Pl |+P| |+P| _|+P|.|=1, (A4) P(l)m(l f). (A10)
0 1 0 1
Using P(})=p, we obtain the stationary solution from Eg.
P(00)+P(10)=1-p, (A5)  (A10) as
0 (1-F)F
0 0 P( )=— (A11)
Pl |+P|.|=1-p, A6 1 1-f
0 1) P (A9) f+ —F
1-p
where p is the ant density. EquatiofAl) expresses the \yhere we use the relation
particle-hole symmetry condition while the EGA2) is a
consequence of the definition of the model. The other equa- 0 0
tions are known as Kolmogorov consistency conditif2v. gP 0 +QP 1
We need two more equations in order to obtain the ex- F=0qe:P(10)=P(10) . (A12)
pression for all the eight variables in E@). These are ob- b 0 b 0
tained by considering the master equations for, $4{0) 0 + 1
and P(g). In the (2+1)-cluster approximation, the master
equation forP(00) is given by From Egs.(A12) and (Al1l), we have
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(1-f)F model proposed in Ref25]. In the model, one cluster of
der=q+(Q—0q) A=p) T+ (1=DF (A13)  carsis assumed to exist in the background of stationary uni-
P form flow, while in Appendix A we only consider the uni-

Fina”y7 Substituting Eq(Al3) into Eq (Ag), we obtain the form flow to derive flux of ants, and neglect the CIUStering

cubic equatior(10) for the fluxF. effect. The cluster-size distributidd(m) was derived as the
We can also calculate the distribution of cluster sizes destationary solution of its master equation in Ref5]. How-
fined in Sec. IV. We can write it as ever, since we have already obtaire¢m), we will use Eq.
(11) instead of considering the master equation. The flux in
1 P(11) ml o P(10) cluster is considered to be zero, thus total flux in a given
P(m)= EP(OD P(10)+ P(11) P(10)+ P(11) configuration of this system is given byxdm—-1)/L+F,,
X[1—(m—1)/L] if msize cluster exists. Herg,, repre-
_1PQA0?( - PAO|™? A1q)  Sents the uniform flux under the existancenmbize cluster,
C »p p ' (AL4) which is defined by using Eq10) as

Q-q)(1-HFy |
L= pm) T (1-D)Fp]
(D)

Here C is determined through the normalization condition
E';nzlp(m)=1, whereL is the system size, as

P(10)| "
c= P(10)( 1—(1— T) ]

Fzm_ Fntpm(l—pm)|q+

(A15)  andp,, is given by

ThusP(m) is given by Eq.(11). o :M.

Let us also consider the the probability of finding an ant, M 1-(m-1)/L
pheromone, and nothing in the front site discussed in Se
VI. The probability of finding an ant is simply given by
P(11). The probability of finding pheromone without an ant,
and that of nothing are given, respectively, by

(B2)

S these equations, we take into account that the density of
the uniform flow is reduced due to the existancemssize
cluster.

Thus, the flux of this stochastic cluster approximation is
0 0 finally given by
P P L
m—1
P(10 —5 o PA0O—r or- (A6 Flp)= 2 P(m)(l— T)Fm. (B3)
m=1
+ +
P 0 P 1) P 0 P 1)

Note that if only the first term on the rhs of E@3) is

Normalizing these quantities by dividing we obtain each retained and all the other terms are dropped, the expression

probability by only usingP(10) andP(9) as given in Egs. for F(p) reduces to the the fundamental diagrams obtained

(12)—(14). in the (2+1)-cluster approximatioiand plotted in Fig. B

We have evaluated EGB3) numerically by using the distri-

bution (11), but the results are almost the same as Fig. 3 and,

therefore, not shown here. This, however, is not surprising in
Let us extend the analysis in the Appendix A following view of the fact that the rhs of E¢B3) is dominated bym

the approach used in analyzing the stochastic car cluster1 because of the sharp peakRfm) atm=1.
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