104 research outputs found

    Outcomes of primary and recurrent inguinal hernia repair with prosthetic mesh in a single region over 15 years

    Get PDF
    Background Sutured inguinal hernia repairs are now uncommon, with evidence suggesting that those augmented with mesh are associated with a lower recurrence rate. We aimed to explore the suggestion that the established use of mesh does indeed lower the rate of operation for recurrence in a single National Health Service region. Method We collected retrospective Office of Population Censuses and Surveys coded data across one region of all primary and recurrent inguinal hernia repairs over 15 years (2004–2019). Electronic records of recurrent repairs were scrutinised to identify year and type of previous primary repair. Results In total, 7,234 repairs were performed during this time, of which 289 (4%) were for symptomatic recurrence. Operations for primary repair increased year on year (111 in 2004 to 402 in 2019). Frequency of operation for recurrent herniation declined with increasing use of mesh (8.8% in 2004 to 3.5% in 2019). The majority of repairs (73%) for recurrence were by an open approach. As opposed to an open mesh repair, a primary laparoscopic repair was associated with an earlier recurrence. Conclusions Inguinal hernia repairs are increasing in frequency but operations for later symptomatic recurrence following an open primary prosthetic mesh repair are not

    An association analysis of sow parity, live-weight and back-fat depth as indicators of sow productivity

    Get PDF
    Publication history: Accepted - 4 June 2018; Published online - 18 July 2018; Published - March 2019.Understanding how critical sow live-weight and back-fat depth during gestation are in ensuring optimum sow productivity is important. The objective of this study was to quantify the association between sow parity, live-weight and back-fat depth during gestation with subsequent sow reproductive performance. Records of 1058 sows and 13 827 piglets from 10 trials on two research farms between the years 2005 and 2015 were analysed. Sows ranged from parity 1 to 6 with the number of sows per parity distributed as follows: 232, 277, 180, 131, 132 and 106, respectively. Variables that were analysed included total born (TB), born alive (BA), piglet birth weight (BtWT), pre-weaning mortality (PWM), piglet wean weight (WnWT), number of piglets weaned (Wn), wean to service interval (WSI), piglets born alive in subsequent farrowing and sow lactation feed intake. Calculated variables included the within-litter CV in birth weight (LtV), pre-weaning growth rate per litter (PWG), total litter gain (TLG), lactation efficiency and litter size reared after cross-fostering. Data were analysed using linear mixed models accounting for covariance among records. Third and fourth parity sows had more (P<0.05) TB, BA and heavier BtWT compared with gilts and parity 6 sow contemporaries. Parities 2 and 3 sows weaned more (P<0.05) piglets than older sows. These piglets had heavier (P<0.05) birth weights than those from gilt litters. LtV and PWM were greater (P<0.01) in litters born to parity 5 sows than those born to younger sows. Sow live-weight and back-fat depth at service, days 25 and 50 of gestation were not associated with TB, BA, BtWT, LtV, PWG, WnWT or lactation efficiency (P>0.05). Heavier sow live-weight throughout gestation was associated with an increase in PWM (P<0.01) and reduced Wn and lactation feed intake (P<0.05). Deeper back-fat in late gestation was associated with fewer (P<0.05) BA but heavier (P<0.05) BtWT, whereas deeper back-fat depth throughout gestation was associated with reduced (P<0.01) lactation feed intake. Sow back-fat depth was not associated with LtV, PWG, TLG, WSI or piglets born alive in subsequent farrowing (P>0.05). In conclusion, this study showed that sow parity, live-weight and back-fat depth can be used as indicators of reproductive performance. In addition, this study also provides validation for future development of a benchmarking tool to monitor and improve the productivity of modern sow herd.Department of Agriculture, Food and the Marine, Ireland (DAFM), University of Leeds

    Epimorphin expression in interstitial pneumonia

    Get PDF
    Epimorphin modulates epithelial morphogenesis in embryonic mouse organs. We previously suggested that epimorphin contributes to repair of bleomycin-induced pulmonary fibrosis in mice via epithelium-mesenchyme interactions. To clarify the role of epimorphin in human lungs, we evaluated epimorphin expression and localization in normal lungs, lungs with nonspecific interstitial pneumonia (NSIP), and lungs with usual interstitial pneumonia (UIP); we also studied the effect of recombinant epimorphin on cultured human alveolar epithelial cells in vitro. Northern and Western blotting analyses revealed that epimorphin expression in NSIP samples were significantly higher than those in control lungs and lungs with UIP. Immunohistochemistry showed strong epimorphin expression in mesenchymal cells of early fibrotic lesions and localization of epimorphin protein on mesenchymal cells and extracellular matrix of early fibrotic lesions in the nonspecific interstitial pneumonia group. Double-labeled fluorescent images revealed expression of matrix metalloproteinase 2 in re-epithelialized cells overlying epimorphin-positive early fibrotic lesions. Immunohistochemistry and metalloproteinase activity assay demonstrated augmented expression of metalloproteinase induced by recombinant epimorphin in human alveolar epithelial cells. These findings suggest that epimorphin contributes to repair of pulmonary fibrosis in nonspecific interstitial pneumonia, perhaps partly by inducing expression of matrix metalloproteinase 2, which is an important proteolytic factor in lung remodeling

    Comparative proteomic analysis of metabolically labelled proteins from Plasmodium falciparum isolates with different adhesion properties

    Get PDF
    The virulence of Plasmodium falciparum relates in part to the cytoadhesion characteristics of parasitized erythrocytes but the molecular basis of the different qualitative and quantitative binding phenotypes is incompletely understood. This paucity of information is due partly to the difficulty in working with membrane proteins, the variant nature of these surface antigens and their relatively low abundance. To address this two-dimensional (2D) protein profiles of closely related, but phenotypically different laboratory strains of P. falciparum have been characterized using proteomic approaches. Since the mature erythrocyte has no nucleus and no protein synthesis capability, metabolic labelling of proteins was used to selectively identify parasite proteins and increase detection sensitivity. A small number of changes (less than 10) were observed between four different P. falciparum laboratory strains with distinctive cytoadherence properties using metabolic labelling, with more parasite protein changes found in trophozoite iRBCs than ring stage. The combination of metabolic labelling and autoradiography can therefore be used to identify parasite protein differences, including quantitative ones, and in some cases to obtain protein identifications by mass spectrometry. The results support the suggestion that the membrane protein profile may be related to cytoadherent properties of the iRBCs. Most changes between parasite variants were differences in iso-electric point indicating differential protein modification rather than the presence or absence of a specific peptide

    Porcine Feed Efficiency-Associated Intestinal Microbiota and Physiological Traits: Finding Consistent Cross-Locational Biomarkers for Residual Feed Intake

    Get PDF
    Publication history: Accepted - 21 May 2019; Published online - 18 June 2019Optimal feed efficiency (FE) in pigs is important for economic and environmental reasons. Previous research identified FE-associated bacterial taxa within the intestinal microbiota of growing pigs. This study investigated whether FE-associated bacteria and selected FE-associated physiological traits were consistent across geographic locations (Republic of Ireland [ROI) [two batches of pigs, ROI1 and ROI2], Northern Ireland [NI], and Austria [AT]), where differences in genetic, dietary, and management factors were minimized. Pigs (n = 369) were ranked, within litter, on divergence in residual feed intake (RFI), and 100 extremes were selected (50 with high RFI and 50 with low RFI) across geographic locations for intestinal microbiota analysis using 165 rRNA amplicon sequencing and examination of FE-associated physiological parameters. Microbial diversity varied by geographic location and intestinal sampling site but not by RFI rank, except in ROI2, where more-feed-efficient pigs had greater ileal and cecal diversity. Although none of the 188 RFI-associated taxonomic differences found were common to all locations/batches, Lentisphaerae, Ruminococcaceae, RF16, Mucispirillum, Methanobrevibacter, and two uncultured genera were more abundant within the fecal or cecal microbiota of low-RFI pigs in two geographic locations and/or in both ROI batches. These are major contributors to carbohydrate metabolism, which was reflected in functional predictions. Fecal volatile fatty acids and salivary cortisol were the only physiological parameters that differed between RFI ranks. Despite controlling genetics, diet specification, dietary phases, and management practices in each rearing environment, the rearing environment, encompassing maternal influence, herd health status, as well as other factors, appears to impact intestinal microbiota more than FE. IMPORTANCE Interest in the role of intestinal microbiota in determining FE in pigs has increased in recent years. However, it is not known if the same FE-associated bacteria are found across different rearing environments. In this study, geographic location and intestinal sampling site had a greater influence on the pig gut microbiome than FE. This presents challenges when aiming to identify consistent reliable microbial biomarkers for FE. Nonetheless, seven FE-associated microbial taxa were common across two geographic locations and/or two batches within one location, and these indicated a potentially "healthier' and metabolically more capable microbiota in more-feed-efficient pigs. These taxa could potentially be employed as biomarkers for FE, although bacterial consortia, rather than individual taxa, may be more likely to predict FE. They may also merit consideration for use as probiotics or could be targeted by dietary means as a strategy for improving FE in pigs in the future.The research leading to these results received funding from the European Union’s Seventh Framework Programme (ECO-FCE project number 311794) for research, technological development, and demonstration independently of any commercial input, financial or otherwise. U.M.M. was funded by the Teagasc Walsh Fellowship program. Gwynneth Halley, who assisted with laboratory work, was funded by a Society for Applied Microbiology Students into Work grant

    The kinetics of antibody binding to Plasmodium falciparum VAR2CSA PfEMP1 antigen and modelling of PfEMP1 antigen packing on the membrane knobs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Infected humans make protective antibody responses to the PfEMP1 adhesion antigens exported by <it>Plasmodium falciparum </it>parasites to the erythrocyte membrane, but little is known about the kinetics of this antibody-receptor binding reaction or how the topology of PfEMP1 on the parasitized erythrocyte membrane influences antibody association with, and dissociation from, its antigenic target.</p> <p>Methods</p> <p>A Quartz Crystal Microbalance biosensor was used to measure the association and dissociation kinetics of VAR2CSA PfEMP1 binding to human monoclonal antibodies. Immuno-fluorescence microscopy was used to visualize antibody-mediated adhesion between the surfaces of live infected erythrocytes and atomic force microscopy was used to obtain higher resolution images of the membrane knobs on the infected erythrocyte to estimate knob surface areas and model VAR2CSA packing density on the knob.</p> <p>Results</p> <p>Kinetic analysis indicates that antibody dissociation from the VAR2CSA PfEMP1 antigen is extremely slow when there is a high avidity interaction. High avidity binding to PfEMP1 antigens on the surface of <it>P. falciparum</it>-infected erythrocytes in turn requires bivalent cross-linking of epitopes positioned within the distance that can be bridged by antibody. Calculations of the surface area of the knobs and the possible densities of PfEMP1 packing on the knobs indicate that high-avidity cross-linking antibody reactions are constrained by the architecture of the knobs and the large size of PfEMP1 molecules.</p> <p>Conclusions</p> <p>High avidity is required to achieve the strongest binding to VAR2CSA PfEMP1, but the structures that display PfEMP1 also tend to inhibit cross-linking between PfEMP1 antigens, by holding many binding epitopes at distances beyond the 15-18 nm sweep radius of an antibody. The large size of PfEMP1 will also constrain intra-knob cross-linking interactions. This analysis indicates that effective vaccines targeting the parasite's vulnerable adhesion receptors should primarily induce strongly adhering, high avidity antibodies whose association rate constant is less important than their dissociation rate constant.</p

    Mortality and pulmonary complications in patients undergoing surgery with perioperative sars-cov-2 infection: An international cohort study

    Get PDF
    Background The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (740%) had emergency surgery and 280 (248%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (261%) patients. 30-day mortality was 238% (268 of 1128). Pulmonary complications occurred in 577 (512%) of 1128 patients; 30-day mortality in these patients was 380% (219 of 577), accounting for 817% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 175 [95% CI 128-240], p&lt;00001), age 70 years or older versus younger than 70 years (230 [165-322], p&lt;00001), American Society of Anesthesiologists grades 3-5 versus grades 1-2 (235 [157-353], p&lt;00001), malignant versus benign or obstetric diagnosis (155 [101-239], p=0046), emergency versus elective surgery (167 [106-263], p=0026), and major versus minor surgery (152 [101-231], p=0047). Interpretation Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research

    Elective cancer surgery in COVID-19-free surgical pathways during the SARS-CoV-2 pandemic: An international, multicenter, comparative cohort study

    Get PDF
    PURPOSE As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19–free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19–free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19–free surgical pathways. Patients who underwent surgery within COVID-19–free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19–free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score–matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19–free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION Within available resources, dedicated COVID-19–free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Elective Cancer Surgery in COVID-19-Free Surgical Pathways During the SARS-CoV-2 Pandemic: An International, Multicenter, Comparative Cohort Study.

    Get PDF
    PURPOSE: As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19-free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS: This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19-free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS: Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19-free surgical pathways. Patients who underwent surgery within COVID-19-free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19-free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score-matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19-free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION: Within available resources, dedicated COVID-19-free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks
    corecore