10,395 research outputs found
Designer de Sitter Spacetimes
Recent observations in cosmology indicate an accelerating expansion of the
universe postulated to arise from some form of dark energy, the paradigm being
positive cosmological constant. De Sitter spacetime is the well-known isotropic
solution to the Einstein equations with cosmological constant. However, as
discussed here, it is not the most general, locally isotropic solution. One can
construct an infinite family of such solutions, designer de Sitter spacetimes,
which are everywhere locally isometric to a region of de Sitter spacetime.
However, the global dynamics of these designer cosmologies is very different
than that of de Sitter spacetime itself. The construction and dynamics of these
designer de Sitter spacetimes is detailed along with some comments about their
implications for the structure of our universe.Comment: 6 pages, no figure, correction of sign in eq.
Gravitational microlensing as a test of stellar model atmospheres
We present calculations illustrating the potential of gravitational
microlensing to discriminate between classical models of stellar surface
brightness profiles and the recently computed ``Next Generation'' models of
Hauschildt et al. These spherically-symmetric models include a much improved
treatment of molecular lines in the outer atmospheres of cool giants -- stars
which are very typical sources in Galactic bulge microlensing events. We show
that the microlensing signatures of intensively monitored point and fold
caustic crossing events are readily able to distinguish between NextGen and the
classical models, provided a photometric accuracy of 0.01 magnitudes is
reached. This accuracy is now routinely achieved by alert networks, and hence
current observations can discriminate between such model atmospheres, providing
a unique insight on stellar photospheres.Comment: 4 pages, 4 figures, Astronomy & Astrophysics (Letters), vol. 388, L1
(2002
The Flux Ratio Method for Determining the Dust Attenuation of Starburst Galaxies
The presence of dust in starburst galaxies complicates the study of their
stellar populations as the dust's effects are similar to those associated with
changes in the galaxies' stellar age and metallicity. This degeneracy can be
overcome for starburst galaxies if UV/optical/near-infrared observations are
combined with far-infrared observations. We present the calibration of the flux
ratio method for calculating the dust attenuation at a particular wavelength,
Att(\lambda), based on the measurement of F(IR)/F(\lambda) flux ratio. Our
calibration is based on spectral energy distributions (SEDs) from the PEGASE
stellar evolutionary synthesis model and the effects of dust (absorption and
scattering) as calculated from our Monte Carlo radiative transfer model. We
tested the attenuations predicted from this method for the Balmer emission
lines of a sample starburst galaxies against those calculated using radio
observations and found good agreement. The UV attenuation curves for a handful
of starburst galaxies were calculated using the flux ratio method, and they
compare favorably with past work. The relationship between Att(\lambda) and
F(IR)/F(\lambda) is almost completely independent of the assumed dust
properties (grain type, distribution, and clumpiness). For the UV, the
relationship is also independent of the assumed stellar properties (age,
metallicity, etc) accept for the case of very old burst populations. However at
longer wavelengths, the relationship is dependent on the assumed stellar
properties.Comment: accepted by the ApJ, 18 pages, color figures, b/w version at
http://mips.as.arizona.edu/~kgordon/papers/fr_method.htm
Magnification relations in gravitational lensing via multidimensional residue integrals
We investigate the so-called magnification relations of gravitational lensing
models. We show that multidimensional residue integrals provide a simple
explanation for the existence of these relations, and an effective method of
computation. We illustrate the method with several examples, thereby deriving
new magnification relations for galaxy lens models and microlensing (point mass
lensing).Comment: 16 pages, uses revtex4, submitted to Journal of Mathematical Physic
Expansion of the Planet Detection Channels in Next-Generation Microlensing Surveys
We classify various types of planetary lensing signals and the channels of
detecting them. We estimate the relative frequencies of planet detections
through the individual channels with special emphasis on the new channels to be
additionally provided by future lensing experiments that will survey wide
fields continuously at high cadence by using very large-format imaging cameras.
From this investigation, we find that the fraction of wide-separation planets
that would be discovered through the new channels of detecting planetary
signals as independent and repeating events would be substantial. We estimate
that the fraction of planets detectable through the new channels would comprise
~15 -- 30% of all planets depending on the models of the planetary separation
distribution and mass ratios of planets. Considering that a significant
fraction of planets might exist in the form of free-floating planets, the
frequency of planets to be detected through the new channel would be even
higher. With the expansion of the channels of detecting planet, future lensing
surveys will greatly expand the range of planets to be probed.Comment: 6 pages, 3 figures, one tabl
Supersymmetric D-branes and calibrations on general N=1 backgrounds
We study the conditions to have supersymmetric D-branes on general {\cal N}=1
backgrounds with Ramond-Ramond fluxes. These conditions can be written in terms
of the two pure spinors associated to the SU(3)\times SU(3) structure on
T_M\oplus T^\star_M, and can be split into two parts each involving a different
pure spinor. The first involves the integrable pure spinor and requires the
D-brane to wrap a generalised complex submanifold with respect to the
generalised complex structure associated to it. The second contains the
non-integrable pure spinor and is related to the stability of the brane. The
two conditions can be rephrased as a generalised calibration condition for the
brane. The results preserve the generalised mirror symmetry relating the type
IIA and IIB backgrounds considered, giving further evidence for this duality.Comment: 23 pages. Some improvements and clarifications, typos corrected and
references added. v3: Version published in JHE
Double precision trajectory program /DPTRAJ 2.2C/
Four part program computes trajectory of space probe moving in solar system and subject to variety of forces
An accurate equation of state for the one component plasma in the low coupling regime
An accurate equation of state of the one component plasma is obtained in the
low coupling regime . The accuracy results from a smooth
combination of the well-known hypernetted chain integral equation, Monte Carlo
simulations and asymptotic analytical expressions of the excess internal energy
. In particular, special attention has been brought to describe and take
advantage of finite size effects on Monte Carlo results to get the
thermodynamic limit of . This combined approach reproduces very accurately
the different plasma correlation regimes encountered in this range of values of
. This paper extends to low 's an earlier Monte Carlo
simulation study devoted to strongly coupled systems for ({J.-M. Caillol}, {J. Chem. Phys.} \textbf{111}, 6538 (1999)). Analytical
fits of in the range are provided with a
precision that we claim to be not smaller than . HNC equation and
exact asymptotic expressions are shown to give reliable results for
only in narrow intervals, i.e. and respectively
- …
