6,172 research outputs found
Swift J0525.6+2416 and IGR J04571+4527: two new hard X-ray selected magnetic cataclysmic variables identified with XMM-Newton
IGR J04571+4527 and Swift J0525.6+2416 are two hard X-ray sources detected in
the Swift/BAT and INTEGRAL/IBIS surveys. They were proposed to be magnetic
cataclysmic variables of the Intermediate Polar (IP) type, based on optical
spectroscopy. IGR J04571+4527 also showed a 1218 s optical periodicity,
suggestive of the rotational period of a white dwarf, further pointing towards
an IP classification. We here present detailed X-ray (0.3-10 keV) timing and
spectral analysis performed with XMM-Newton, complemented with hard X-ray
coverage (15-70 keV) from Swift/BAT. These are the first high signal to noise
observations in the soft X-ray domain for both sources, allowing us to identify
the white dwarf X-ray spin period of Swift J0525.6+2416 (226.28 s), and IGR
J04571+4527 (1222.6 s). A model consisting of multi-temperature optically thin
emission with complex absorption adequately fits the broad-band spectrum of
both sources. We estimate a white dwarf mass of about 1.1 and 1.0 solar masses
for IGR J04571+4527 and Swift J0525.6+2416, respectively. The above
characteristics allow us to unambiguously classify both sources as IPs,
confirming the high incidence of this subclass among hard X-ray emitting
Cataclysmic Variables.Comment: 8 pages, 4 figures, 3 tables. Accepted for publication in MNRA
The Three Dimensional Structure of EUV Accretion Regions in AM Herculis Stars: Modeling of EUV Photometric and Spectroscopic Observations
We have developed a model of the high-energy accretion region for magnetic
cataclysmic variables and applied it to {\it Extreme Ultraviolet Explorer}
observations of 10 AM Herculis type systems. The major features of the EUV
light curves are well described by the model. The light curves exhibit a large
variety of features such as eclipses of the accretion region by the secondary
star and the accretion stream, and dips caused by material very close to the
accretion region. While all the observed features of the light curves are
highly dependent on viewing geometry, none of the light curves are consistent
with a flat, circular accretion spot whose lightcurve would vary solely from
projection effects. The accretion region immediately above the WD surface is a
source of EUV radiation caused by either a vertical extent to the accretion
spot, or Compton scattering off electrons in the accretion column, or, very
likely, both. Our model yields spot sizes averaging 0.06 R, or the WD surface area, and average spot heights of 0.023
R. Spectra extracted during broad dip phases are softer than spectra
during the out-of-dip phases. This spectral ratio measurement leads to the
conclusion that Compton scattering, some absorption by a warm absorber,
geometric effects, an asymmetric temperature structure in the accretion region
and an asymmetric density structure of the accretion columnare all important
components needed to fully explain the data. Spectra extracted at phases where
the accretion spot is hidden behind the limb of the WD, but with the accretion
column immediately above the spot still visible, show no evidence of emission
features characteristic of a hot plasma.Comment: 30 Pages, 11 Figure
Fast preparation of single hole spin in InAs/GaAs quantum dot in Voigt geometry magnetic field
The preparation of a coherent heavy-hole spin via ionization of a
spin-polarized electron-hole pair in an InAs/GaAs quantum dot in a Voigt
geometry magnetic field is investigated. For a dot with a 17 ueV bright-exciton
fine-structure splitting, the fidelity of the spin preparation is limited to
0.75, with optimum preparation occurring when the effective fine-structure of
the bright-exciton matches the in-plane hole Zeeman energy. In principle,
higher fidelities can be achieved by minimizing the bright-exciton
fine-structure splitting.Comment: 8 pages, 10 figs, published PRB 85 155310 (2012
RAT J0455+1305: A rare hybrid pulsating subdwarf B star
We present results on the second-faintest pulsating subdwarf B (sdB) star
known, RAT J0455+1305, derived from photometric data obtained in 2009. It shows
both short and long periods oscillations, theoretically assigned as pressure
and gravity modes. We identify six short-period frequencies (with one being a
combination) and six long-period frequencies. This star is the fourth hybrid
sdB star discovered so far which makes it of special interest as each type of
mode probes a different part of the star. This star is similar to the sdB
hybrid pulsator Balloon 090100001 in that it exhibits short-period mode
groupings, which can be used to identify pulsation parameters and constrain
theoretical models.Comment: published in MNRA
An Optimal Linear Time Algorithm for Quasi-Monotonic Segmentation
Monotonicity is a simple yet significant qualitative characteristic. We
consider the problem of segmenting a sequence in up to K segments. We want
segments to be as monotonic as possible and to alternate signs. We propose a
quality metric for this problem using the l_inf norm, and we present an optimal
linear time algorithm based on novel formalism. Moreover, given a
precomputation in time O(n log n) consisting of a labeling of all extrema, we
compute any optimal segmentation in constant time. We compare experimentally
its performance to two piecewise linear segmentation heuristics (top-down and
bottom-up). We show that our algorithm is faster and more accurate.
Applications include pattern recognition and qualitative modeling.Comment: This is the extended version of our ICDM'05 paper (arXiv:cs/0702142
Feedback from massive stars at low metallicities : MUSE observations of N44 and N180 in the Large Magellanic Cloud
Accepted for publication in MNRAS, 27 pages, 21 figuresWe present MUSE integral field data of two HII region complexes in the Large Magellanic Cloud (LMC), N44 and N180. Both regions consist of a main superbubble and a number of smaller, more compact HII regions that formed on the edge of the superbubble. For a total of 11 HII regions, we systematically analyse the radiative and mechanical feedback from the massive O-type stars on the surrounding gas. We exploit the integral field property of the data and the coverage of the HeII5412 line to identify and classify the feedback-driving massive stars, and from the estimated spectral types and luminosity classes we determine the stellar radiative output in terms of the ionising photon flux . We characterise the HII regions in terms of their sizes, morphologies, ionisation structure, luminosity and kinematics, and derive oxygen abundances via emission line ratios. We analyse the role of different stellar feedback mechanisms for each region by measuring the direct radiation pressure, the pressure of the ionised gas, and the pressure of the shock-heated winds. We find that stellar winds and ionised gas are the main drivers of HII region expansion in our sample, while the direct radiation pressure is up to three orders of magnitude lower than the other terms. We relate the total pressure to the star formation rate per unit area, , for each region and find that stellar feedback has a negative effect on star formation, and sets an upper limit to as a function of increasing pressure.Peer reviewe
- …
