271 research outputs found

    Effect of different UCOE-promoter combinations in creation of engineered cell lines for the production of Factor VIII

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The most common approach used in generating cell lines for the production of therapetic proteins relies on gene amplification induced by a drug resistance gene e. g., DHFR and glutamine synthetase. Practically, this results in screening large number of clones for the one that expresses high levels of the biologic in a stable manner. The inefficiency of mammalian vector systems to express proteins in a stable manner typically involves silencing of the exogenous gene resulting from modifications such as methylation of CpG DNA sequences, histone deacetylation and chromatin condensation. The use of un-methylated CpG island fragments from housekeeping genes referred to as UCOE (ubiquitous chromatin opening elements) in plasmid vectors is now well established for increased stability of transgene expression. However, few UCOE-promoter combinations have been studied to date and in this report we have tested 14 different combinations.</p> <p>Findings</p> <p>In this report we describe studies with two different UCOEs (the 1.5 Kb human RNP fragment and the 3.2 Kb mouse RPS3 fragment) in combination with various promoters to express a large protein (B domain deleted factor VIII; BDD-FVIII) in a production cell line, BHK21. We show here that there are differences in expression of BDD-FVIII by the different UCOE-promoter combinations in both attached and serum free suspension adapted cells. In all cases, the 1.5 Kb human RNP UCOE performed better in expressing BDD-FVIII than their corresponding 3.2 Kb mouse RPS3 UCOE. Surprisingly, in certain scenarios described here, expression from a number of promoters was equivalent or higher than the commonly used and industry standard human CMV promoter.</p> <p>Conclusion</p> <p>This study indicates that certain UCOE-promoter combinations are better than others in expressing the BDD-FVIII protein in a stable manner in BHK21 cells. An empirical study such as this is required to determine the best combination of UCOE-promoter in a vector for a particular production cell line.</p

    EZH2 Codon 641 Mutations are Common in BCL2-Rearranged Germinal Center B Cell Lymphomas

    Get PDF
    Mutations at codon 641 of EZH2 are recurrent in germinal center B cell lymphomas, and the most common variants lead to altered EZH2 enzymatic activity and enhanced tri-methylation of histone H3 at lysine 27, a repressive chromatin modification. As an initial step toward screening patients for cancer genotype-directed therapy, we developed a screening assay for EZH2 codon 641 mutations amenable for testing formalin-fixed clinical specimens, based on the sensitive SNaPshot single nucleotide extension technology. We detected EZH2 mutations in 12/55 (22%) follicular lymphomas (FL), 5/35 (14%) diffuse large B cell lymphomas with a germinal center immunophenotype (GCB-DLBCL), and 2/11 (18%) high grade B cell lymphomas with concurrent rearrangements of BCL2 and MYC. No EZH2 mutations were detected in cases of Burkitt lymphoma (0/23). EZH2 mutations were frequently associated with the presence of BCL2 rearrangement (BCL2-R) in both the FL (28% of BCL-R cases versus 0% of BCL2-WT cases, p<0.05) and GCB-DLBCL groups (33% of BCL2-R cases versus 4% of BCL2-WT cases, p<0.04), and across all lymphoma types excluding BL (27% of BCL2-R cases versus 3% of BCL2-WT cases, p<0.003). We confirmed gain-of-function activity for all previously reported EZH2 codon 641 mutation variants. Our findings suggest that EZH2 mutations constitute an additional genetic “hit” in many BCL2-rearranged germinal center B cell lymphomas. Our work may be helpful in the selection of lymphoma patients for future trials of pharmacologic agents targeting EZH2 and EZH2-regulated pathways

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment

    TGFbeta Family Members Are Key Mediators in the Induction of Myofibroblast Phenotype of Human Adipose Tissue Progenitor Cells by Macrophages

    Get PDF
    International audienceOBJECTIVE: The present study was undertaken to characterize the remodeling phenotype of human adipose tissue (AT) macrophages (ATM) and to analyze their paracrine effects on AT progenitor cells. RESEARCH DESIGN AND METHODS: The phenotype of ATM, immunoselected from subcutaneous (Sc) AT originating from subjects with wide range of body mass index and from paired biopsies of Sc and omental (Om) AT from obese subjects, was studied by gene expression analysis in the native and activated states. The paracrine effects of ScATM on the phenotype of human ScAT progenitor cells (CD34(+)CD31(-)) were investigated. RESULTS: Two main ATM phenotypes were distinguished based on gene expression profiles. For ScAT-derived ATM, obesity and adipocyte-derived factors favored a pro-fibrotic/remodeling phenotype whereas the OmAT location and hypoxic culture conditions favored a pro-angiogenic phenotype. Treatment of native human ScAT progenitor cells with ScATM-conditioned media induced the appearance of myofibroblast-like cells as shown by expression of both α-SMA and the transcription factor SNAIL, an effect mimicked by TGFβ1 and activinA. Immunohistochemical analyses showed the presence of double positive α-SMA and CD34 cells in the stroma of human ScAT. Moreover, the mRNA levels of SNAIL and SLUG in ScAT progenitor cells were higher in obese compared with lean subjects. CONCLUSIONS: Human ATM exhibit distinct pro-angiogenic and matrix remodeling/fibrotic phenotypes according to the adiposity and the location of AT, that may be related to AT microenvironment including hypoxia and adipokines. Moreover, human ScAT progenitor cells have been identified as target cells for ScATM-derived TGFβ and as a potential source of fibrosis through their induction of myofibroblast-like cells

    Recurrent Chromosomal Copy Number Alterations in Sporadic Chordomas

    Get PDF
    The molecular events in chordoma pathogenesis have not been fully delineated, particularly with respect to copy number changes. Understanding copy number alterations in chordoma may reveal critical disease mechanisms that could be exploited for tumor classification and therapy. We report the copy number analysis of 21 sporadic chordomas using array comparative genomic hybridization (CGH). Recurrent copy changes were further evaluated with immunohistochemistry, methylation specific PCR, and quantitative real-time PCR. Similar to previous findings, large copy number losses, involving chromosomes 1p, 3, 4, 9, 10, 13, 14, and 18, were more common than copy number gains. Loss of CDKN2A with or without loss of CDKN2B on 9p21.3 was observed in 16/20 (80%) unique cases of which six (30%) showed homozygous deletions ranging from 76 kilobases to 4.7 megabases. One copy loss of the 10q23.31 region which encodes PTEN was found in 16/20 (80%) cases. Loss of CDKN2A and PTEN expression in the majority of cases was not attributed to promoter methylation. Our sporadic chordoma cases did not show hotspot point mutations in some common cancer gene targets. Moreover, most of these sporadic tumors are not associated with T (brachyury) duplication or amplification. Deficiency of CDKN2A and PTEN expression, although shared across many other different types of tumors, likely represents a key aspect of chordoma pathogenesis. Sporadic chordomas may rely on mechanisms other than copy number gain if they indeed exploit T/ brachyury for proliferation
    • …
    corecore