6,825 research outputs found

    Space Suit Concepts and Vehicle Interfaces for the Constellation Program

    Get PDF
    In carrying out NASA’s Vision for Space Exploration, a number of different environments will be encountered that will require the crew to wear a protective space suit. Specifically, four suited mission phases are identified as Launch, Entry & Abort profiles, Contingency 0g (orbital) Extravehicular Activity (EVA), Lunar Surface EVA and Martian Surface EVA. This study presents conceptual design solutions based on a previous architecture assessment that defined space suit operational requirements for four proposed space suit configuration options. In addition, a subset of vehicle interface requirements are defined for enabling umbilical and physical connections between the suits and the various Constellation spacecraft in which they will be used. A summary of the resultant suit and component concepts and vehicle interface definitions is presented. This work was conducted during the fall semester of 2006 as part of a graduate aerospace engineering design class at the University of Colorado

    The pleasures and perils of inheritance

    Get PDF
    Facing death, reflecting on one’s legacies (material and ethical, personal and political) and the legal and interpersonal attempts to resolve or prevent inheritance conflicts, all bring to the fore constructions of memory and identity, intergenerational relations, and the complexities of doing and undoing family and kinship. Consequently, drawing attention to inheritance, keeping sight of it, and bringing it into play is a useful piece of the puzzle of ageing across a range of disciplines and this article provides an overview of some of the key themes in this emerging field

    A model of primitive streak initiation in the chick embryo

    Get PDF
    Initiation of the primitive streak in avian embryos provides a well-studied example of a pattern-forming event that displays a striking capacity for regulation. The mechanisms underlying the regulative properties are, however, poorly understood and are not easily accounted for by traditional models of pattern formation, such as reaction–diffusion models. In this paper, we propose a new activator–inhibitor model for streak initiation. We show that the model is consistent with experimental observations, both in its pattern-forming properties and in its ability to form these patterns on the correct time-scales for biologically realistic parameter values. A key component of the model is a travelling wave of inhibition. We present a mathematical analysis of the speed of such waves in both diffusive and juxtacrine relay systems. We use the streak initiation model to make testable predictions. By varying parameters of the model, two very different types of patterning can be obtained, suggesting that our model may be applicable to other processes in addition to streak initiation

    Computational Materials Techniques for Thermal Protection Solutions: Materials and Process Design

    Get PDF
    Integrated computational materials techniques that span the atomistic and continuum scales have the potential to aid the design and manufacturing of thermal protection materials. Two cases demonstrating the practical application of these methods are discussed. Case one examines the selection of a high temperature coating for carbon/carbon, with the target application being a solar thermal propulsion heat exchanger. The performance of various refractory metal and metal-carbide coatings is characterized considering extreme thermal (3500 degrees Kelvin) and chemical (hydrogen flows) conditions. The recession rate, hydrogen leakage, and likelihood of mechanical failure are characterized and provide directions for further experimental investigation. Case two examines the process optimization of a heat shield material composed of a woven silica fiber preform and cyanate ester resin. Frequently, internal voids were found to be present in this composite after the resin infusion and curing stages of manufacturing. Using the manufacturing conditions, computations indicate that both water adsorption and resin cure shrinkage are contributing factors to void formation. The results suggest an alternative process configuration for curing that would mitigate voids

    Human Amniocytes Are Receptive to Chemically Induced Reprogramming to Pluripotency

    Get PDF
    Restoring pluripotency using chemical compounds alone would be a major step forward in developing clinical-grade pluripotent stem cells, but this has not yet been reported in human cells. We previously demonstrated that VPA_ AFS cells, human amniocytes cultivated with valproic acid (VPA) acquired functional pluripotency while remaining distinct from human embryonic stem cells (hESCs), questioning the relationship between the modulation of cell fate and molecular regulation of the pluripotency network. Here, we used single-cell analysis and functional assays to reveal that VPA treatment resulted in a homogeneous population of self-renewing non-transformed cells that fulfill the hallmarks of pluripotency, i.e., a short G1 phase, a dependence on glycolytic metabolism, expression of epigenetic modifications on histones 3 and 4, and reactivation of endogenous OCT4 and downstream targets at a lower level than that observed in hESCs. Mechanistic insights into the process of VPA-induced reprogramming revealed that it was dependent on OCT4 promoter activation, which was achieved independently of the PI3K (phosphatidylinositol 3-kinase)/ AKT/ mTOR (mammalian target of rapamycin) pathway or GSK3 beta inhibition but was concomitant with the presence of acetylated histones H3K9 and H3K56, which promote pluripotency. Our data identify, for the first time, the pluripotent transcriptional and molecular signature and metabolic status of human chemically induced pluripotent stem cells

    A description of n-ary semigroups polynomial-derived from integral domains

    Get PDF
    We provide a complete classification of the n-ary semigroup structures defined by polynomial functions over infinite commutative integral domains with identity, thus generalizing G{\l}azek and Gleichgewicht's classification of the corresponding ternary semigroups

    The ins and outs of participation in a weather information system

    Get PDF
    In this paper our aim is to show even though access to technology, information or data holds the potential for improved participation, participation is wired into a larger network of actors, artefacts and information practices. We draw on a case study of a weather information system developed and implemented by a non-profit organisation to both describe the configuration of participation, but also critically assess inclusion and exclusion. We present a set of four questions - a basic, practical toolkit - by which we together with the organisation made sense of and evaluated participation in the system

    Associative polynomial functions over bounded distributive lattices

    Get PDF
    The associativity property, usually defined for binary functions, can be generalized to functions of a given fixed arity n>=1 as well as to functions of multiple arities. In this paper, we investigate these two generalizations in the case of polynomial functions over bounded distributive lattices and present explicit descriptions of the corresponding associative functions. We also show that, in this case, both generalizations of associativity are essentially the same.Comment: Final versio

    Identifying dynamical modules from genetic regulatory systems: applications to the segment polarity network

    Get PDF
    BACKGROUND It is widely accepted that genetic regulatory systems are 'modular', in that the whole system is made up of smaller 'subsystems' corresponding to specific biological functions. Most attempts to identify modules in genetic regulatory systems have relied on the topology of the underlying network. However, it is the temporal activity (dynamics) of genes and proteins that corresponds to biological functions, and hence it is dynamics that we focus on here for identifying subsystems. RESULTS Using Boolean network models as an exemplar, we present a new technique to identify subsystems, based on their dynamical properties. The main part of the method depends only on the stable dynamics (attractors) of the system, thus requiring no prior knowledge of the underlying network. However, knowledge of the logical relationships between the network components can be used to describe how each subsystem is regulated. To demonstrate its applicability to genetic regulatory systems, we apply the method to a model of the Drosophila segment polarity network, providing a detailed breakdown of the system. CONCLUSION We have designed a technique for decomposing any set of discrete-state, discrete-time attractors into subsystems. Having a suitable mathematical model also allows us to describe how each subsystem is regulated and how robust each subsystem is against perturbations. However, since the subsystems are found directly from the attractors, a mathematical model or underlying network topology is not necessarily required to identify them, potentially allowing the method to be applied directly to experimental expression data
    corecore