860 research outputs found
Flaw Selection Strategies for Partial-Order Planning
Several recent studies have compared the relative efficiency of alternative
flaw selection strategies for partial-order causal link (POCL) planning. We
review this literature, and present new experimental results that generalize
the earlier work and explain some of the discrepancies in it. In particular, we
describe the Least-Cost Flaw Repair (LCFR) strategy developed and analyzed by
Joslin and Pollack (1994), and compare it with other strategies, including
Gerevini and Schubert's (1996) ZLIFO strategy. LCFR and ZLIFO make very
different, and apparently conflicting claims about the most effective way to
reduce search-space size in POCL planning. We resolve this conflict, arguing
that much of the benefit that Gerevini and Schubert ascribe to the LIFO
component of their ZLIFO strategy is better attributed to other causes. We show
that for many problems, a strategy that combines least-cost flaw selection with
the delay of separable threats will be effective in reducing search-space size,
and will do so without excessive computational overhead. Although such a
strategy thus provides a good default, we also show that certain domain
characteristics may reduce its effectiveness.Comment: See http://www.jair.org/ for an online appendix and other files
accompanying this articl
Computational Design and Analysis of a Transonic Natural Laminar Flow Wing for a Wind Tunnel Model
A natural laminar flow (NLF) wind tunnel model has been designed and analyzed for a wind tunnel test in the National Transonic Facility (NTF) at the NASA Langley Research Center. The NLF design method is built into the CDISC design module and uses a Navier-Stokes flow solver, a boundary layer profile solver, and stability analysis and transition prediction software. The NLF design method alters the pressure distribution to support laminar flow on the upper surface of wings with high sweep and flight Reynolds numbers. The method addresses transition due to attachment line contamination/transition, Gortler vortices, and crossflow and Tollmien-Schlichting modal instabilities. The design method is applied to the wing of the Common Research Model (CRM) at transonic flight conditions. Computational analysis predicts significant extents of laminar flow on the wing upper surface, which results in drag savings. A 5.2 percent scale semispan model of the CRM NLF wing will be built and tested in the NTF. This test will aim to validate the NLF design method, as well as characterize the laminar flow testing capabilities in the wind tunnel facility
Ground state properties of a confined simple atom by C fullerene
We numerically study the ground state properties of endohedrally confined
hydrogen (H) or helium (He) atom by a molecule of C. Our study is based
on Diffusion Monte Carlo method. We calculate the effects of centered and small
off-centered H- or He-atom on the ground state properties of the systems and
describe the variation of ground state energies due to the C parameters
and the confined atomic nuclei positions. Finally, we calculate the electron
distributions in plane in a wide range of C parameters.Comment: 23 pages, 9 figures. To appear in J.Phys. B: Atom. Mol. Op
Multijunction Solar Cell Development and Production at Spectrolab
Development of multijunction space solar cells is much like that for any high technology product. New products face two major pressures from the market: improving performance while maintaining heritage. This duality of purpose is not new and has been represented since ancient times by the Roman god Janus.[1] This deity was typically represented as two faces on a single head: one facing forward and the other to the rear. The image of Janus has been used as symbolism for many combined forces of dual purpose, such as the balance in life between beginnings and endings, or between art and science. For our purposes, Janus represents our design philosophy balance between looking to the future for improvement while simultaneously blending past heritage. In the space photovoltaics industry there are good reasons for both purposes. Looking to the past, a product must have a space flight heritage to gain widespread use. The main reason being that this is an unforgiving business. Spacecraft are expensive to build, launch and operate. Typically once a satellite is launched, in-field service for a power systems problem is near impossible.[2Balanced with this is looking forward. New missions typically require more power than previous programs or attempt new objectives such as a new orbit. And there is always the cost pressure for both the satellite itself as well as the launch costs. Both of which push solar technology to improve power density at a lower cost. The consequence of this balance in a high-risk environment is that space PV develops as a series of infrequent large technology steps or generational changes interspersed with more frequent small technology steps or evolutionary changes. Figure 1 gives a bit of clarification on this point. It depicts the historical progress in space solar cells tracked by efficiency against first launch date for most major products introduced by Spectrolab. The first generation is the Si-based technology reaching a peak values near 15% AM0 (herein denoted for max. power, AM0, 1.353 W/cm2, 28 C). The GaAs single junction device generation supplanted this technology with first flight of GaAs on GaAs substrate in 1982.[3] More recently this generation has been supplanted by the multijunction solar cell GaInP/GaAs/Ge generation. The first launch of a commercial satellite powered by multijunction technology was in 1997 (Hughes HS 601HP) using solar arrays based on Spectrolab s dual junction (DJ) cells. The cells at that time were an impressive 21.5% efficient at beginning-of-life (BOL).[4] Eight years later, the multijunction device has evolved through several versions. The incorporation of an active Ge subcell formed the Triple Junction (TJ) product line at 25.1% efficient, on orbit since November 2001. The evolution of the TJ into the Improved Triple Junction (ITJ) at 26.8% efficient has been on orbit since June of 2002.[5
Progress in Classical and Quantum Variational Principles
We review the development and practical uses of a generalized Maupertuis
least action principle in classical mechanics, in which the action is varied
under the constraint of fixed mean energy for the trial trajectory. The
original Maupertuis (Euler-Lagrange) principle constrains the energy at every
point along the trajectory. The generalized Maupertuis principle is equivalent
to Hamilton's principle. Reciprocal principles are also derived for both the
generalized Maupertuis and the Hamilton principles. The Reciprocal Maupertuis
Principle is the classical limit of Schr\"{o}dinger's variational principle of
wave mechanics, and is also very useful to solve practical problems in both
classical and semiclassical mechanics, in complete analogy with the quantum
Rayleigh-Ritz method. Classical, semiclassical and quantum variational
calculations are carried out for a number of systems, and the results are
compared. Pedagogical as well as research problems are used as examples, which
include nonconservative as well as relativistic systems
Active control of instabilities in laminar boundary-layer flow. Part 1: An overview
This paper (the first in a series) focuses on using active-control methods to maintain laminar flow in a region of the flow in which the natural instabilities, if left unattended, lead to turbulent flow. The authors review previous studies that examine wave cancellation (currently the most prominent method) and solve the unsteady, nonlinear Navier-Stokes equations to evaluate this method of controlling instabilities. It is definitely shown that instabilities are controlled by the linear summation of waves (i.e., wave cancellation). Although a mathematically complete method for controlling arbitrary instabilities has been developed (but not yet tested), the review, duplication, and physical explanation of previous studies are important steps for providing an independent verification of those studies, for establishing a framework for subsequent work which will involve automated transition control, and for detailing the phenomena by which the automated studies can be used to expand knowledge of flow control
A Classification of Hyper-heuristic Approaches
The current state of the art in hyper-heuristic research comprises a set of approaches that share the common goal of automating the design and adaptation of heuristic methods to solve hard computational search problems. The main goal is to produce more generally applicable search methodologies. In this chapter we present and overview of previous categorisations of hyper-heuristics and provide a unified classification and definition which captures the work that is being undertaken in this field. We distinguish between two main hyper-heuristic categories: heuristic selection and heuristic generation. Some representative examples of each category are discussed in detail. Our goal is to both clarify the main features of existing techniques and to suggest new directions for hyper-heuristic research
Grassland productivity limited by multiple nutrients
Terrestrial ecosystem productivity is widely accepted to be nutrient limited1. Although nitrogen (N) is deemed a key determinant of aboveground net primary production (ANPP)2,3, the prevalence of co-limitation by N and phosphorus (P) is increasingly recognized4,5,6,7,8. However, the extent to which terrestrial productivity is co-limited by nutrients other than N and P has remained unclear. Here, we report results from a standardized factorial nutrient addition experiment, in which we added N, P and potassium (K) combined with a selection of micronutrients (K+μ), alone or in concert, to 42 grassland sites spanning five continents, and monitored ANPP. Nutrient availability limited productivity at 31 of the 42 grassland sites. And pairwise combinations of N, P, and K+μ co-limited ANPP at 29 of the sites. Nitrogen limitation peaked in cool, high latitude sites. Our findings highlight the importance of less studied nutrients, such as K and micronutrients, for grassland productivity, and point to significant variations in the type and degree of nutrient limitation. We suggest that multiple-nutrient constraints must be considered when assessing the ecosystem-scale consequences of nutrient enrichment
Active Control of Boundary-Layer Instabilities: Use of Sensors and Spectral Controller
Full Navier-Stokes equations were conducted to determine the feasibility of automating the control of wave instabilities within a flat plate boundary layer with sensors, actuators, and a spectral controller. The results indicate that a measure of wave cancellation can be obtained for small and large amplitude instabilities without feedback; however, feedback is required to optimize the control amplitude and phase for exact wave cancellation
- …
