7,024 research outputs found

    Crystal Symmetry Breaking in Few-Quintuple Bismuth Telluride Films: Applications in Nanometrology of Topological Insulators

    Full text link
    We report results of micro-Raman spectroscopy investigation of the "graphene-like" mechanically exfoliated single-crystal bismuth telluride films with the thickness ranging from a few-nm-range to bulk limit. It is found that the optical phonon mode A1u, which is not-Raman active in bulk bismuth telluride crystals, appears in the atomically-thin films due to crystal-symmetry breaking. The intensity ratios of the out-of-plane A1u and A1g modes to the in-plane Eg mode grow with decreasing film thickness. The evolution of Raman signatures with the film thickness can be used for identification of bismuth telluride crystals with the thickness of few-quintuple layers, which are important for topological insulator and thermoelectric applications.Comment: 13 pages, 2 tables, 3 figures; to be presented at MRS Spring Meeting, 201

    Work-In-Progress Paper: WebXR to support student wellbeing and anxiety

    Get PDF
    The COVID-19 pandemic social distancing measures had immense evidenced impact on student life in higher education affecting their mental health in many ways. In addition, remote working measures taken by Higher Education organizations to protect students and staff created an additional barrier for students seeking support at a stage they feel the most vulnerable. This paper presents a work-in-progress study that focuses on investigating ways of designing an online system for self-assessment symptoms of anxiety based on which available support is provided in a personalized and emotionally engaging manner. The project builds and compares three prototypes: a conventional web site; a VR immersive environment with a single virtual human playing the role of a student life advisor; and an immersive environment with more than one virtual humans interacting with the user aiming to study which system engages and assists vulnerable students more effectively, contributing to a better user experience. The paper presents that project motivations, its aims and objectives, the proposed research methodology and the expected contributions to knowledge

    Individual, communal and institutional responses to climate change by low-income households in Khulna, Bangladesh

    Get PDF
    The relationship between “coping” and “resilience” increasingly features in academic, policy and practical discussions on adaptation to climate change in urban areas. This paper examines this relationship in the context of households in “extreme poverty” in the city of Khulna, Bangladesh. It draws on a quantitative data set based on 550 household interviews in low-income and informal settlements that identified the extent of the underlying drivers of vulnerability in this setting, including very low income, inadequate shelter, poor nutritional status and limited physical assets. A series of focus groups were used to explore the ways in which physical hazards have interacted with this underlying vulnerability, as a means to understand the potential impacts of climate change on this particular group of urban residents. These outcomes include frequent water-logging, the destruction of houses and disruption to the provision of basic services. The main focus of the paper is on describing the practices of low-income urban residents in responding to climate-related shocks and stresses, placing these in a particular political context, and drawing lessons for urban policies in Bangladesh and elsewhere. A wide range of specific adaptation-related activities can be identified, which can be grouped into three main categories – individual, communal and institutional. The paper examines the extent to which institutional actions are merely “coping” – or whether they create the conditions in which individuals and households can strengthen their own long-term resilience. Similarly, it examines the extent to which individual and communal responses are merely “coping” – or whether they have the potential to generate broader political change that strengthens the position of marginalized groups in the city

    Strong enhancement of Jc in binary and alloyed in-situ MgB2 wires by a new approach: Cold high pressure densification

    Full text link
    Cold high pressure densification (CHPD) is presented as a new way to substantially enhance the critical current density of in situ MgB2 wires at 4.2 and 20 K at fields between 5 and 14 T. The results on two binary MgB2 wires and an alloyed wire with 10 wt.% B4C are presented The strongest enhancement was measured at 20K, where cold densification at 1.85 GPa on a binary Fe/MgB2 wire raised both Jcpara and Jcperp by more than 300% at 5T, while Birr was enhanced by 0.7 T. At 4.2K, the enhancement of Jc was smaller, but still reached 53% at 10 T. After applying pressures up to 6.5 GPa, the mass density dm of the unreacted (B+Mg) mixture inside the filaments reached 96% of the theoretical density. After reaction under atmospheric pressure, this corresponds to a highest mass density df in the MgB2 filaments of 73%. After reaction, the electrical resistance of wires submitted to cold densification was found to decrease, reflecting an improved connectivity. A quantitative correlation between filament mass density and the physical properties was established. Monofilamentary rectangular wires with aspect ratios a/b < 1.25 based on low energy ball milled powders exhibited very low anisotropy ratios, Gamma = Jcpara/Jcperp being < 1.4 at 4.2 K and 10T. The present results can be generalized to alloyed MgB2 wires, as demonstrated on a wire with B4C additives. Based on the present data, it follows that cold densification has the potential of further improving the highest Jcpara and Jcperp values reported so far for in situ MgB2 tapes and wires with SiC and C additives. Investigations are under work in our laboratory to determine whether the densification method CHPD can be applied to longer wire or tape lengths.Comment: Submitted to Superconductors Science and Technolog

    A hybrid model for studying the size effects on flow stress in micro - forming with the consideration of grain hardening

    Full text link
    © 2019 Trans Tech Publications Ltd, Switzerland. Size effects extremely exist in the metal micro-forming process. When a deformation process scales down to micro scale, the appearances of geometry size and single grain size starts to play a major role in deformation. Generally, the size effects are unavoidable in the experimental work and cannot be neglect in the optimization of micro-forming processes. In this paper, size effect on flow stress is investigated in the form of the coupled effect of workpiece geometry (sample thickness) and grain size, (T/D) by the micro tensile test of pure copper foil. Following the previous approaches, a new hybrid material model is projected to describe the hardening behavior of grains in polycrystalline material. Tensile tests performed on the copper foil with constant thickness and width, while to get dissimilar grain sizes, the foil annealed for different times. The ratio of thickness to grain size (T/D) is limited to larger than 1 (T/D>1). A hybrid material model is proposed and established based on grain heterogeneity and sample thickness. The hybrid material model builds a relationship between the surface layer and sheet interior. The hybrid material model developed by the strain gradient theory in which the dislocation cell structure, cell densities (interior and wall) engaged to define the polycrystalline aggregate and calculated the dislocations in a grain (grain interior and grain wall). The results show that flow stress varies with the different values of T/D, but with an increase of the share of the grains flow stress start to decreases. After applying the hybrid material model of flow stress, the micro-tensile test of copper foil is simulated by finite element method. The simulation outcomes well matched with experimental results

    Rapid generation of angular momentum in bounded magnetized plasma

    Full text link
    Direct numerical simulations of two-dimensional decaying MHD turbulence in bounded domains show the rapid generation of angular momentum in nonaxisymmetric geometries. It is found that magnetic fluctuations enhance this mechanism. On a larger time scale, the generation of a magnetic angular momentum, or angular field, is observed. For axisymmetric geometries, the generation of angular momentum is absent; nevertheless, a weak magnetic field can be observed. The derived evolution equations for both the angular momentum and angular field yield possible explanations for the observed behavior

    Genericness of inflation in isotropic loop quantum cosmology

    Full text link
    Non-perturbative corrections from loop quantum cosmology (LQC) to the scalar matter sector is already known to imply inflation. We prove that the LQC modified scalar field generates exponential inflation in the small scale factor regime, for all positive definite potentials, independent of initial conditions and independent of ambiguity parameters. For positive semi-definite potentials it is always possible to choose, without fine tuning, a value of one of the ambiguity parameters such that exponential inflation results, provided zeros of the potential are approached at most as a power law in the scale factor. In conjunction with generic occurrence of bounce at small volumes, particle horizon is absent thus eliminating the horizon problem of the standard Big Bang model.Comment: 4 pages, revtex4, one figure. Only e-print archive numbers correctedi in the second version. Reference added in the 3rd version. Final version to appear in Phys. Rev. Lett. Explanations improve

    Forced MHD turbulence in a uniform external magnetic field

    Get PDF
    Two-dimensional dissipative MHD turbulence is randomly driven at small spatial scales and is studied by numerical simulation in the presence of a strong uniform external magnetic field. A behavior is observed which is apparently distinct from the inverse cascade which prevails in the absence of an external magnetic field. The magnetic spectrum becomes dominated by the three longest wavelength Alfven waves in the system allowed by the boundary conditions: those which, in a box size of edge 2 pi, have wave numbers (kx' ky) = (1, 1), and (1, -1), where the external magnetic field is in the x direction. At any given instant, one of these three modes dominates the vector potential spectrum, but they do not constitute a resonantly coupled triad. Rather, they are apparently coupled by the smaller-scale turbulence
    • …
    corecore