We present direct numerical simulations and alpha-model simulations of four
familiar three-dimensional magnetohydrodynamic (MHD) turbulence effects:
selective decay, dynamic alignment, inverse cascade of magnetic helicity, and
the helical dynamo effect. The MHD alpha-model is shown to capture the
long-wavelength spectra in all these problems, allowing for a significant
reduction of computer time and memory at the same kinetic and magnetic Reynolds
numbers. In the helical dynamo, not only does the alpha-model correctly
reproduce the growth rate of magnetic energy during the kinematic regime, but
it also captures the nonlinear saturation level and the late generation of a
large scale magnetic field by the helical turbulence.Comment: 12 pages, 19 figure