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Numerical solutions of the three-dimensional magnetohydrodynamic alpha-model

Pablo D. Mininni, David C. Montgomery and Annick Pouquét
1 Advanced Study Program, National Center for Atmospheric Research, P.O. Box 3000, Boulder, Colorado 80307 and
2 Dept. of Physics and Astronomy, Dartmouth College, Hanover, NH 03755
(Dated: January 1, 2018)

We present direct numerical simulations anthodel simulations of four familiar three-dimensional mag
tohydrodynamic (MHD) turbulence effects: selective deahgamic alignment, inverse cascade of magnetic
helicity, and the helical dynamo effect. The MHDBmodel is shown to capture the long-wavelength spectra in
all these problems, allowing for a significant reduction ofnputer time and memory at the same kinetic and
magnetic Reynolds numbers. In the helical dynamo, not ooésdhex-model correctly reproduce the growth
rate of magnetic energy during the kinematic regime, busit aaptures the nonlinear saturation level and the
late generation of a large scale magnetic field by the hdiicblilence.

PACS numbers: 47.27.Eq; 47.27.Gs; 47.11.4j

I. INTRODUCTION cus in the study of the inverse cascade of magnetic helicity
and the dynamo effect. Finally, we summarize the results in

The “alpha model” as it has come to be called in fluid me-S€cTV.
chanics, is a procedure whereby, by suppressing small spa-
tial scales in a computation in a way that intends to do mini-
mum damage to the accuracy with which the long wavelengthI I
spectral components are calculated, one can realize stibbta
savings in computing timél[L| B, B,14,5,[6[7[B[d,[10,[11, 12, In familiar “Alfvénic” dimensionless units, the original

RELEVANT EQUATIONS;, PROBLEMS CONSIDERED

[13]. In a previous papek [114], we gave a simple Wa\élto extendHD equations are

the alpha model to magnetohydrodynamics (see also 9, 10] 5

for extensions in the non-dissipative case), we specihlize oy +v-Vv = - VP +jxB -1V x w, (1)
two dimensions, and numerically tested its predictionssa-a ot

rigs of compl_Jtatiorls. These were chosen as situation_g where oB +v-VB = B-Vv -1V xj, )
direct numerical simulations (DNS) that started from ident ot

cal initial conditions were feasible. The intent of this geat together withV - v — 0 — V - B.

paper is to present comparisons of the same kind for three- The velocity field i Ce i

: ; : o y field isv, the magnetic field i8 = V x A,
dlmgnhs:conal (ﬁD) magneFthdr?dKna;nlﬁs (MHS.)' Th's.b's 4whereA is the vector potential. The electric current density is
straightforward program in the light of the two-dimensi naj = V x B and the vorticity isv = V x v. The dimensionless

(2D) investigationsl[14] and we will draw heavily on the ma- pressure, normalized to the (uniform) mass densify,isnd

terial in. that paper o avoid repet?tion, butin 3D.’ new pheRo is obtained by taking the divergence of EQl (1), using the in-
ena arise, such as the generation of magnetic fields throu mpressibility conditioi” - v — 0, and solving the resulting

stretching by velocity gradients, and furthermore 3D is eom o _. : ; ;
putationally more demanding than 2D. Poisson equation. Removing a curl from Hg. (2) gives

In Sectiordl, we take the 3D alpha model MHD equations oA .
[14] and describe briefly four problems upon which they will o V" B-nj-Ve, ®)
be tested against DNS treatments of the same problems. They
are selective decay, dynamic alignment, the inverse casafad where® is the scalar potential, obtainable also from a Pois-
magnetic helicity, and the mechanically driven turbulept d SOn equation by imposing the Coulomb gauge A = 0.
namo. The first two have already been tested in[2ID [14] and he kinematic viscosity is and the magnetic diffusivity is
the third has a 2D analogue in the inverse cascade of magnetic In these dimensionless units; ' can be interpreted as
vector potential[[14]. The fourth is also not an unfamiliér e @ Reynolds numbeR. = UL /v where in laboratory (c.g.s)
fect, and we have recently been involved in addressing it fokhits, U is a mean flow speed antl is a length character-
the special case of low magnetic Prandtl numbelr [15] and foistic of it. Similarly, =" can be interpreted as a magnetic
non-helical flows. Reynolds numbeR,,, = UL/n. The magnetic Prandtl num-
Our conclusions reached in SeESII}MVI are consistent foRer ISPn = v/ = R /Re.
the most part with those reached for 2D MHD: the alpha N the alpha model the fields andB are smoothed bub
model does a good job of reproducing the spectral behaandj are not[1416]. The prescription is
ior of the long-wavelength Fourier amplitudes (wavenumber ,
k < a~!, wherea is the spatial scale over which the velocity u, = /d%' exp [~ |x — x'|/o] v(x, 1) (4)
field and magnetic field are filtered). Because of the relative dma?|x — x/|
lack of surprises in the selective decay and dynamic aligrime B. = [y &P [—]x — x'|/q] B(x' 5
Sections, we rely on relatively brief presentations, taotfe s / r (x',2) ®)

dra?|x — x|
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Here « is an arbitrary filtering length, generally chosen When we writew, or A, we mean that the same smooth-
smaller than the length scales one wishes to resolveatid  ing recipe as in Eqs[]{d,5) has been applied to the unsmoothed

B are Fourier-decomposed fieldsw or A. Itis possible, and sometimes desirable, to use
different smoothing lengthsa,, ap for the mechanical and
viz,t) = /d3k vic(t)ek® (6)  magnetic quantities L, 115].
E, H- and H,; as defined here are the ideal invariants of
B(z,t) = /d3k By (t)e™*, (7)  Egs. [ILIB), and reduce, as— 0, to the usual ideal 3D
MHD invariants. Sometimes, to make the global quantities
the connection between the Fourier transforms of thedgree at = 0 for initial-value runs, we may initially normal-
smoothed fieldsi, andB, andvy(t), Bi(t) are ize the Fourier coefficients of the fields, by multiplicatioy
a common factor, to bringg and H¢ into exact initial agree-
u,(k,t) = vi(t)/(1+k*a?) (8)  ment with the corresponding numbers for the ideal 3D MHD
B,(k,t) = By(t)/(1+ k%ﬂ), 9) invariants (note thati,,; involves two smoothed fields, and
_ _ _ therefore can not be matched to the DNS initial conditions at
or in configuration space the same time). Hereafter, such global quantitied’ag/ -,
v - (1 _ QQVQ) w (10) etc.,-W|II be referred to unit volun?e. o
B — (1-a’V?)B.. (11) It is well known that for decaying turbulent situations, the

presence of enough initial/,; or H- can lead to a late-

Note that we choose to smooth both the velocity and the magdime state in which the ratiofy,/E| or |Hc/E| can be
netic field at the same length-scale, a choice appropriate f&!0Se to maximal. The first situation, called “selectivealgt
the unit magnetic Prandtl number & 7)) cases treated in this 114, [1D] leads to a late-time quasi-steady state in which
paper (for a different choice, sde][15]). the remaining energy is nearly all magnetic and is nearly all

The dynamics of the alpha mod&l[14] amount to solvingcondensed into the longest wavelength modes allowed by the
the pair, boundary conditions. The second situation, called “dyrami

alignment,” [2b[ 21 22] leads to a late-time quasi-steadies

ov tu, Vv =~V — VP +j x B, in whichv andB are nearly parallel or anti-parallel. In both
ot cases, the states can be very long-lived because the nanline
—vV X w, (12)  transfer to small scales has essentially been shut dowp-(“su
OB, . pression of nonlinearity”). We illustrate these two sitoas
B +us-VB; = B;:-Vu, —nV xj, (13)  in Secs[Il andIV.
where it is to be emphasized that in EqSITIR, 33}, andw Inverse cascade procesdes$ [2B[ 24 75, 26] are those wherein

excitations externally injected at the small scales artepee-
tially transferred to the larger scales and pile up theeating

In rectangular periodic boundary conditions (which we em_coherent macroscopic structures at large scales where none

- NN : tinitially. A quantity which can be inverselg-ca
ploy throughout), the idealk(= 0 = n) invariants that have Were presen . . Lo
been identified for EqsCTCZL3 the eneft caded in 3D MHD isH ,[25]. We illustrate this with an
een ldentified for =qs ) are the enefgy externally-driven run in SeglV.

are not smoothedpP is to be determined, as before, from the
relevant Poisson equation.

E = 1/(118 v+ B B,)d, (14) Dynamo processes (see Ref.1[27] for a review) are those
2 whereby mechanical injection of excitations transfer gper
the cross helicitydc, to magnetic fields, cal_Jsing them to amplify. A noyel exampl_e
of helical dynamo action using the alpha-model is treated in
1
He == /v - B, d’z, a5 Secd.
2 In all four cases, well-resolved DNS solutions are regarded
and the magnetic helicityZ /, as baseline truths against which alpha-model computagiens
to be tested.
1
Hy =5 /As ‘B, d*z. (16)

In the presence of non-zerpandv, the decay rates faf,
H¢, andH ) can readily been shown to be

d—E —l//ws-wd3x—n/j2d3:v a7
dt In selective decays, energy decays rapidly relative to mag-
dHc _ly/w o i — ln/w jd*z (18)  netic helicity, if any [17[1819]. In order to display theopr
dt 2 2 cess most clearly, it helps to start an initial-value deaay r
dH ) 3 with a significant amount of magnetic helicity. One way to
dat _77/3 ‘B, d'z (19) accomplish this is to make the initial valuesvoéndB out of

I11. SELECTIVE DECAY




what are called “ABC” flows. We define

vapc = [Becos(ky) + Csin(kz)] & +

+ [Asin(kz) + Ccos(kz)] § +
+ [Acos(kx) + Bsin(ky)] 2 (20)
for arbitrary real numberd, B, C, andk. vopc is an eigen-
function of the curl. The specific initial conditions chosae W
Etop
v(t=0)= Z vo [Vasco(k, dr) + v(k)e™>]  (21)
k=kpot
ktop
B(t=0)= > b |[vasc(h o) + BIe™>|. (22)
F=Hor 0 1 2 3 4 5
The notationv 4 s (k, ¢ ) means that for eack in the sum- Time

mation, a random phasg, is added to the arguments of the
sines and cosines for that The summations are over all the
k values (which lie on a lattice ik space defined by the pe-
riodic boundary conditions) between raglii,; andk;,. The

v(k) andB(k) represent added random perturbations.

Here, we have chosett = B = C' = 1, kpot = 6, ktop =
10, anduwy, by are chosen to make the initiéh?) = (B?) =
1, where {.)” means a spatial average over the basic box. Itis
also the case that initiallyy - B) = 0. Random mode$ (k)
andB(k) are added with an energetic level to initially give
(A -B) = 0.5(]A||BJ). The dimensionless inverse Reynolds
numbers are = n = 0.002.

Three runs for a typical case are displayed. The first of these
is a well-resolved DNS run at a resolution 2if63, with de-
aliasing achieved by zeroing out all Fourier coefficientthwi o TR T T TV PRI TR
k > 256/3, a method that will be used throughout (usually 0 100 200 300 400 500 600
referred to as the2/3 rule”). Then twoa-model runs are
performed with the same initial conditions, 1883 run with
a = 1/20 and a64® run with o = 1/10. The same values
of v, n apply to all three runs. The caption of Fig. 1.a iden-FIG. 1: (color online) (a) Magnetic energy (upper curves) kimetic
tifies the decaying energies (kinetic eneifgy and magnetic energy (lower blue curves) as a function of time unti= 5, and
energyE)y) as functions of time. Figd1.b shows the ratio (b) relative magnetic helicity as a function of time urtti= 600,
(A -B)/(|A||B|) as a function of time for the three runs; it for the selegctlve decay runs. Solid lines correspond tgo DiéShed
has increased to aboved99 by the final time. Ilnes 0128 a-model simulations, and dotted lines@d” a-model

Fig.[d shows the (unnormalized) energies and magnetic hgimulations.
licities for the three runs. Note that by normalizing the DNS
and a-model initial conditions to have equal energies, it has

meant that the:-model magnetic helicities have necessarilyis able to reproduce the large scale structures observéa in t

started at lower initial values than those of the DNS. . . .
Figs.[3 and# show the associated energy spectra plotted VI:S)NS, and only slight differences can be observed. As will

wave number. Fid]3 is at an early time=£ 10) and shows the be §h0_wn in SectidlLV Fh.is s not f_;llways the case whep using
periodic boundary conditions (similar results were ob#dim

total energy spectrum compensated by Kolmogorevis'3 2D MHD simulations|[T4])

law. Fig. [4 shows kineticKx) and magnetic ;) energy '

spectra at a very late time & 733). The two values ofv—!

are shown as vertical lines. Below~ a~!, the DNS and

a-model agree reasonably well.

As follows from Figs.[P anfl4, at late times the magnetic
field is concentrated at large scalés< 1) and has maximum In this case, we load Fourier coefficients into the spherical
relative helicity (note thatl ~ Ej; ~ H), aftert ~ 200 shells withky,, = 6 < k < kop = 10 with equal ampli-
in both the DNS and alpha-model simulations). [y. 5 showgsudes but enough correlation between the phasesarfd B
surfaces of constarff,,; att = 800 in the 3D domain, for the so that initially (v - B) = 0.3 (|v||B|); otherwise the phases

2H,/<IAlBI>

Time

DNS and thes4® alpha-model simulation. The alpha-model

IV. DYNAMIC ALIGNMENT
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FIG. 2: (color online) Total energy (upper blue curves) aratjmetic 1o I
helicity (lower curves) as a function of time. Labels arerabiig.[l. 10 [ i
LT I
10715} :
100 : ‘ I
1071 ‘ i
-20 i
10-2 10750
" 10-3
~
o104
o
1075
10-6 FIG. 4: (a) Kinetic and (b) magnetic energy spectra, for tiree
10-7 dynamic alignment runs (labels are as in [Eig. 1), at733.

ment, and the disparity becomes greatenvas is decreased,
though the accuracy remains within the 10 percent level. Fig

FIG. 3: Total energy spectrum compensated by Kolmogorewg3 %I showsf tf;}e (:ecay Of_lpr?tﬁ and_HC’h.W'th the more rfapld ial
law, for the three dynamic alignment runs (labels are as gn [H), ecay of the former. ere Is, in this case, no preferentia

att = 10. Vertical dotted and dashed lines indicate respectivedy th Migration of any global quantity to long wavelengths.
scalesy™! = 10 and20. Figured8 anfll9 show the kinetic and magnetic energy spec-

tra at an early timet = 4.5, and at a late oné,= 156. The

agreement of the-model and DNS fok < o~ is again seen
are random. We again do2563 DNS run, ana-model run  to be excellent except for an unexplained over-estimateeat t
at1283 with o = 1/20, and anothex-model run a64? with earlier timet = 4.5 for the kinetic energy spectrum.
a = 1/10. For all three runsy = n = 0.002. The same Fig. [I0 shows surfaces of constdiit att = 150 in the
conventions are adopted for the graphics as in Edc. Il 3D domain, for the DNS and thet? alpha-model simulation.

Figs.[@a,b show the decay of the kinetic and magnetic enwhile there are marked similarities in the kinds of struetur

ergies (a), chosen initially to be equal; and (b) the degre@resent in the DNS and in the alpha runs, there are no one-
of alignment, as measured by the mean cosine of the aligne-one correspondences as to specific features, eithel@s to
ment angle,(u, - B) / (ju,||B|) that develops as a function cation or orientation. As in the 2D cadel[14] we conclude
of time. Since much of the alignment is contributed by thethat in this case the alpha-model does an excellent job repro
small scales, tha-model underestimates the degree of align-ducing the statistical properties of the large-scale spebtit
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Time

FIG. 6: (color online) (a) Magnetic energy (upper curves) kinetic
energy (lower blue curves) as a function of time unti= 5, and
(b) relative cross helicity as a function of time until= 160, for
the dynamic alignment runs. Solid lines correspond to DNShed

: s . . . 5
FIG. 5: (color online) Surfaces of constant magnetic hglidensity lines to128” a-model simulations, and dotted lines@¢” a-model

att = 800 at 90% of its maximum value, for the DNS (above), and Simulations.
the 64 alpha-model simulation (below).

V. INVERSE CASCADES

Inverse cascades of magnetic helicity, driven mechampicall

at the small scales, have long been known to be an efficient
small-scale detailed phase information (such as the lmzafi ~ dynamo mechanism for generating large-scale magnetisfield
structures) is lost. ]. Here, we try a different approach: we drive the magneti

field directly at small scales with a random forcing function

that is a superposition of “ABC” flows [see E.120)] between

The reason for the striking agreement betweerntimodel  wavenumberg = 8 and 9, and with no driving for the ve-

and DNS exhibited in Fidl5, as contrasted with the disagreelocity. The randomness is introduced by randomly changing
ment shown later in Fig[_10 is that in the case of selectivahe phases in the trigonometric arguments of each ABC com-
decay, both computations have found the same final state: th@nent with a correlation time ekt = 1.25 x 102 (in all
isotropic, maximum-helicityk = 1 state. This state is the the simulations we discuss in this section, the time step is
“ABC flow” with A, B, andC all equal. 2.5 x 1073). A tiny seed velocity field is amplified some-
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FIG. 7: (color online) Total energy (upper blue curves) anoss
helicity (lower curves) as a function of time. Labels arerabiiy.[3.

what, but the kinetic energy always remains well below the
level of the magnetic energy throughout. We again exhilait th
results of a256% DNS computation, and-model computa-
tions witha = 1/20 and1/10, with resolutions ofi28% and
642 respectively.

Figs. 11 show the time histories of the energies (a) and
magnetic helicities (b) for the three runs. The rather abrup
phase jumps in the ABC flows give the lines a jagged appealFIG. 8: (a) Kinetic and (b) magnetic energy spectra, for thee
ance and itis sometimes difficult to identify which of thegar ~ dynamic alignment runs (labels are as in [Elg. 6), at4.5. Vertical
runs is which. Suffice it to say that the twemodel runs ex- dotted and dashed lines indicate respectively the sealés= 10
hibit the same features as the DNS runs, but with a time lagnd20-
that is greater for the larger. This is visible more clearly
in Fig. [2, where the magnetic helicity spectra for the three
simulations are plotted as functions/af The curves are the
helicity spectra as functions of time. The lower levels of ex
citation are associated with earlier times. The times atddb The mechanically-driven dynamo, in which injected me-
range fromt = 30 to t = 72.5. The peak, once established, chanical energy is converted to magnetic energy at large
moves to the left with nearly the same speed in each case. Tiseales, has long been a recurrent problem in MHD [27]. Here
suppression of small scales, where the unsmoothed ABC flowe are able to show that the alpha model yields the same re-
is also unstable, may be responsible for the time lag. Thisults within acceptable accuracy as those of a DNS of the same
time-lagged behavior is reminiscent of what happened in tweituation (see Ref[[15] for another case of recent intgrest
dimensions with the inverse cascade of mean square vector We begin with a velocity field which is again forced ex-
potential [14]. However, note that in three dimensions oncdernally with the “ABC” geometry of Eq.[[20). We choose
the inverse cascade has been established, the growth rate4f= 0.9, B = 1.0, andC = 1.1, kg = 3, with n =
magnetic helicity is well captured by the alpha-model (Fig.r = 0.002. This choice is governed by the knowledge that
[[1.b), indicative of a more local cascade (in scale). Thegvow the A = B = C flow gives the largest dynamo growth rate
laws present in the spectra of magnetic helicity, and kineti [29] but it is hydrodynamically very stable [30]; breakirigat
and magnetic energl [25] are also well captured by the alphasymmetry allows for turbulence to develop fastei [31].
model. The force is allowed to operate until a statistically-siead

VI. THEDYNAMO
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turbulent Navier-Stokes flow prevails. Then a magnetic see#IG. 10: (color online) Surfaces of constant cross helidiypsity at

field is introduced at a very low level in the modes frém- 1 t = 150 at 50% of its maximum value, for the DNS (above), and the

to k = 10. As in some other sections, we compare a DNS64° alpha-model simulation (below).

run at resolutior2563 with two a-model runs, one witly =

1/20 and128? resolution, the other witax = 1/10 and 643 _

resolution. flow (both for DNS and the alpha-mod€l [7]) is measured by
Before embarking on the MHD comparison between DNSEhe kinetic helicity

and alpha-modelresults, it is instructive to compare trardry 1

dynamic properties of the flow. When the small magnetic seed Hyg =5 /V wdlz. (23)

is introduced, the Lorentz force in the Navier-Stokes eiquat

can be neglected. The induction equation is linear in the-madt is also useful to normalize this quantity introducing th&a-

netic field, and as a result, the geometrical properties @f thtive helicity2H / ({|v]) {|w|)). Fig.[I3 shows the probability

flow are responsible for the observed amplification. distribution function (pdf) of relative kinetic helicityof the
The flow generated by the external ABC force is helical. DNS and alpha-model simulations. A stronger positive tail

Previous studies of the alpha-model behavior in simulationcan be identified in all cases, giving rise to a net positive ki

of hydrodynamic flows were carried for non-helical flows netic helicity in the flow.

[€,[13]. As a result, here we will focus only on the charac- In 3D hydrodynamic turbulence, kinetic helicity is an ideal

terization of the flow helicity. The amount of helicity in a invariant and is known to cascade to smaller scalgs[[d2, 33].
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FIG. 11: (color online) (a) Magnetic energy (upper curves) &i- FIG. 12: Spectrum of magnetic helicity for different timésr, ¢t =
netic energy (lower blue curves) as a function of time, andrag- 30, 35, 40, 45, 55, and2.5; (a) DNS, (b)128° a-model, and (c)
netic helicity as a function of time. Solid lines correspdodNS, 64 a-model. The vertical lines indicate *. Note the cascade of
dashed lines td28% a-model simulations, and dotted lines Ga* magnetic helicity to large scales as time evolves.

a-model simulations.

that, there are no significant variations in the evolutiothef

Fig. 12 shows the spectrum &f during the hydrodynamic total kinetic and magnetic energy.
simulation. As with the energy, the alpha-model is able to Figs.[I® andl7.a,b show the negative of the magnetic he-
capture the evolution of kinetic helicity in Fourier spaqe u licity, the mean square vector potential, and the mean squar
to k ~ a~'. It seems that a Kolmogorov spectrum resultscurrent density as functions of time. Though the agreements
for helicity [34,[35], which implies that the relative hetigis  are not sharp, itis clear that the saturation levels andriiest
weaker at small scales. of saturation are both well approximated. Note that, in ac-

The early stages of the growth of the magnetic field are ircord with expectations [36], the magnetic helicity acqsiee
the “kinematic dynamo” parameter regime, involving expo-negative value, opposite to the sign of the injected medaéni
nential growth of the magnetic energy. This is shown in Fig.helicity. Note also that growth rates of both small scalep{r
M3, which exhibits both the kinetic and magnetic energy agesented by the square current) and large scales (repedsent
functions of time for the three runs. Though the three enerby the square vector potential) are well approximated by the
gies as functions of time are offset, it is clear that thedine alpha model during the kinematic regime.
growth rates are close. At about= 30, there is a saturation, While att ~ 30 saturation in the exponential growth of
close to a state in which on the average the energy is equipamagnetic energy takes place, the large scale modes continue
titioned approximately between kinetic and magnetic. Afte growing, and at the end the magnetic field is dominated by
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FIG. 14: Spectrum of kinetic helicity. The Kolmogorov’s pois

shown as a reference. The vertical lines indicaté. Labels are as

in Fig.[13. FIG. 16: Negative of the magnetic helicity as a function ofiei
Labels are as in Figi_13.

large scales. While the mean square current density is con-
stant aftet = 30, the squared vector potential keeps growingthe magnetic energy peaks. In the kinematic regime, all the
slowly. This behavior is even clearer in the evolution of themagnetick-shells in Fourier space (up toS 12) grow with
magnetic energy spectrum. the same rate, and this feature is also well captured by the
Figs.[IB.a,b show the evolution of the kinetic and magnetigx-model simulations (not shown). This evolution is charac-
spectra. The thick lines indicate kinetic spectra and tire th teristic of small scale dynamos, as well ak*’ slope in the
lines the magnetic spectra. The vertical lines indicatddhe Magnetic energy spectrum at early times [36, 37]. Eig. 18.b
cations of the two values of "*. In Fig.[I8.a, the upper traces Shows the late-time spectra, when approximate equipartiti
are the DNS spectrum at the time the seed field begins to grokias been achieved. Note that as a result of helical dynamo ac-
both for DNS andx-model simulations. The lower traces in tion, a magnetic field at large scalds=¢ 1) is generated (see
Fig. [I8.a show the magnetic spectrum at an early stage d&fig- [I8.b). The amplitude of this mode is in good agreement
its evolution. During this stage, the magnetic energy specfor both DNS andy-model simulations.
trum peaks at small scales, and thenodel correctly captures Figure[I® shows surfaces of constant magnetic energy at
the overall shape of the spectrum as well as the scale whete= 60, when the nonlinear saturation has already taken place
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FIG. 17: (a) Mean square vector potential, and (b) mean squar =
rent density as functions of time. Labels are as in Eig. 13.

but the large scale magnetic field is still growing. Thin and
elongated structures can be identified in the magnetic field
growing in the DNS. However, note that while these structure
are present both in the DNS and in the alpha-model, in the lat-
ter case the structures are thicker. This change is related t
the filtering lengthx in the alpha-model. Similar results have
been found in vorticity structures observed in simulatiohs
hydrodynamic turbulence using the alpha'moﬂe_l [6]- FIG. 18: (color online) Kinetic (thick blue lines), and magic en-

We thus conclude that there are few surprises in the dynamgq spectra (thin lines), at (a)= 6 and (b)t = 70. Kolmogorov's
simulations, at least for these valuesigf, and no glaring  ;=>/% and Kazantsev'¢™/> spectra are shown as a reference. The
departures of the-model predictions from the DNS results. vertical dotted and dashed lines correspond to the sealés= 10

and 20 respectively. Labels are as in g 13.

VIl. SUMMARY; DISCUSSION

Within the framework of rectangular periodic boundary model as they were in two dimensiohsl[14], but we have not
conditions, we have examined four familiar three-dimenalo  shown those results here because they are so similar to what
MHD turbulence effects via tha-model and DNS. In every Was found in two dimensions.
case, the principal large-scale features of these pheromen
have been achieved with tlkemodel to acceptable accuracy. W
The savings in computer time achieved by thenodel runs
have ranged from563/128° = 8 to 256%/64% = 64, with-
out considering extra saving in the time step from the CF
condition as the resolution is decreased. In no case has th
a-model yielded results at significant variance with the DNS  In conclusion, the MHDr-model can be considered to be
runs, which have been regarded as accurate. validated, at least for the behavior of long-wavelengttctiae

Other features of the DNS runs, such as the probability disin periodic boundary conditions. Its implementation in the
tribution functions of the fluctuating quantities (suchasal  presence of material boundaries stands as a next forbidding
energy dissipation rates), have also been reproduced hy the challenge.

In Ref. [14] also the errors of the-model computations
ere compared against under-resolved DNS. The behavior of
the a-model in three dimensions is comparable to our previ-
ous results, and therefore we refer the reader to our previou
eork for a detailed discussion about this topic.
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