12,315 research outputs found
Non-equilibrium chemistry and dust formation in AGB stars as probed by SiO line emission
We have performed high spatial resolution observations of SiO line emission
for a sample of 11 AGB stars using the ATCA, VLA and SMA interferometers.
Detailed radiative transfer modelling suggests that there are steep chemical
gradients of SiO in their circumstellar envelopes. The emerging picture is one
where the radial SiO abundance distribution starts at an initial high
abundance, in the case of M-stars consistent with LTE chemistry, that
drastically decreases at a radius of ~1E15 cm. This is consistent with a
scenario where SiO freezes out onto dust grains. The region of the wind with
low abundance is much more extended, typically ~1E16 cm, and limited by
photodissociation. The surpisingly high SiO abundances found in carbon stars
requires non-equilibrium chemical processes.Comment: 2 pages, 1 figure. To be published in the proceedings of the
conference "Why Galaxies Care about AGB Stars", held in Vienna, August 7-11,
2006; F. Kerschbaum, C. Charbonnel, B. Wing eds, ASP Conf.Ser. in pres
Leptogenesis from Soft Supersymmetry Breaking (Soft Leptogenesis)
Soft leptogenesis is a scenario in which the cosmic baryon asymmetry is
produced from a lepton asymmetry generated in the decays of heavy sneutrinos
(the partners of the singlet neutrinos of the seesaw) and where the relevant
sources of CP violation are the complex phases of soft supersymmetry-breaking
terms. We explain the motivations for soft leptogenesis, and review its basic
ingredients: the different CP-violating contributions, the crucial role played
by thermal corrections, and the enhancement of the efficiency from lepton
flavour effects. We also discuss the high temperature regime GeV in
which the cosmic baryon asymmetry originates from an initial asymmetry of an
anomalous -charge, and soft leptogenesis reembodies in -genesis.Comment: References updated. Some minor corrections to match the published
versio
High energy spin excitations in YBa_2 Cu_3 O_{6.5}
Inelastic neutron scattering has been used to obtain a comprehensive
description of the absolute dynamical spin susceptibility
of the underdoped superconducting cuprate YBa_2 Cu_3 O_{6.5} ()
over a wide range of energies and temperatures ( and ). Spin excitations of two different
symmetries (even and odd under exchange of two adjacent CuO_2 layers) are
observed which, surprisingly, are characterized by different temperature
dependences. The excitations show dispersive behavior at high energies.Comment: 15 pages, 5 figure
Long-term efficacy of an education programme in improving adherence with continuous positive airway pressure treatment for obstructive sleep apnoea
This randomised controlled trial demonstrated that a motivational enhancement programme composed of a single interview and a follow-up phone call at the initiation of continuous positive airway pressure treatment can improve treatment adherence in subjects with obstructive sleep apnoea, even after 1 year, and lead to better health outcome in terms of reducing daytime sleepiness.published_or_final_versio
Superconductivity-Induced Anomalies in the Spin Excitation Spectra of Underdoped YBa_2 Cu_3 O_{6+x}
Polarized and unpolarized neutron scattering has been used to determine the
effect of superconductivity on the magnetic excitation spectra of YBa_2 Cu_3
O_{6.5} (T_c = 52K) and YBa_2 Cu_3 O_{6.7} (T_c = 67K). Pronounced enhancements
of the spectral weight centered around 25 meV and 33 meV, respectively, are
observed below T_c in both crystals, compensated predominantly by a loss of
spectral weight at higher energies. The data provide important clues to the
origin of the 40 meV magnetic resonance peak in YBa_2 Cu_3 O_7.Comment: LaTex, 4 pages, 4 ps figures. to appear in Phys. Rev. Let
The scaling properties of exchange and correlation holes of the valence shell of second row atoms
We study the exchange and correlation hole of the valence shell of second row
atoms using variational Monte Carlo techniques, especially correlated
estimates, and norm-conserving pseudopotentials. The well-known scaling of the
valence shell provides a tool to probe the behavior of exchange and correlation
as a functional of the density and thus test models of density functional
theory. The exchange hole shows an interesting competition between two scaling
forms -- one caused by self-interaction and another that is approximately
invariant under particle number, related to the known invariance of exchange
under uniform scaling to high density and constant particle number. The
correlation hole shows a scaling trend that is marked by the finite size of the
atom relative to the radius of the hole. Both trends are well captured in the
main by the Perdew-Burke-Ernzerhof generalized-gradient approximation model for
the exchange-correlation hole and energy.Comment: 18 pages, 8 figure
Low-energy Effective Theory for One-dimensional Lattice Bosons near Integer Filling
A low-energy effective theory for interacting bosons on a one-dimensional
lattice at and near integer fillings is proposed. It is found that two sets of
bosonic phase fields are necessary in order to explain the complete phase
diagram. Using the present effective theory, the nature of the quantum phase
transitions among various phases can be identified. Moreover, the general
condition for the appearance of the recently proposed Pfaffian-like state can
be realized from our effective action.Comment: 6 pages, 2 figures, 1 tabl
The Afterglow and Environment of the Short GRB111117A
We present multi-wavelength observations of the afterglow of the short
GRB111117A, and follow-up observations of its host galaxy. From rapid optical
and radio observations we place limits of r \gtrsim 25.5 mag at \deltat \approx
0.55 d and F_nu(5.8 GHz) < 18 \muJy at \deltat \approx 0.50 d, respectively.
However, using a Chandra observation at t~3.0 d we locate the absolute position
of the X-ray afterglow to an accuracy of 0.22" (1 sigma), a factor of about 6
times better than the Swift-XRT position. This allows us to robustly identify
the host galaxy and to locate the burst at a projected offset of 1.25 +/- 0.20"
from the host centroid. Using optical and near-IR observations of the host
galaxy we determine a photometric redshift of z=1.3 (+0.3,-0.2), one of the
highest for any short GRB, and leading to a projected physical offset for the
burst of 10.5 +/- 1.7 kpc, typical of previous short GRBs. At this redshift,
the isotropic gamma-ray energy is E_{gamma,iso} \approx 3\times10^51 erg
(rest-frame 23-2300 keV) with a peak energy of E_{pk} \approx 850-2300 keV
(rest-frame). In conjunction with the isotropic X-ray energy, GRB111117A
appears to follow our recently-reported E_x,iso-E_gamma,iso-E_pk universal
scaling. Using the X-ray data along with the optical and radio non-detections
we find that for a blastwave kinetic energy of E_{K,iso} \approx E_{gamma,iso},
the circumburst density is n_0 \sim 3x10^(-4)-1 cm^-3 (for a range of
epsilon_B=0.001-0.1). Similarly, from the non-detection of a break in the X-ray
light curve at t<3 d, we infer a minimum opening angle for the outflow of
theta_j> 3-10 degrees (depending on the circumburst density). We conclude that
Chandra observations of short GRBs are effective at determining precise
positions and robust host galaxy associations in the absence of optical and
radio detections.Comment: ApJ accepted versio
Magnetic resonance peak and nonmagnetic impurities
Nonmagnetic Zn impurities are known to strongly suppress superconductivity.
We review their effects on the spin excitation spectrum in , as investigated by inelastic neutron scattering measurements.Comment: Proceedings of Mato Advanced Research Workshop BLED 2000. To appear
in Nato Science Series: B Physic
- …
