1,121 research outputs found

    A brief description of the Jameson-Caughey NYU transonic swept-wing computer program: FLO 22

    Get PDF
    A computer program for analyzing inviscid, isentropic, transonic flow past 3-D swept configurations is presented. Some basic aspects of the program are: (1) the free-stream Mach number is restricted only by the isentropic assumption; (2) weak shock waves are automatically located wherever they occur in the flow; (3) the finite-difference form of the full equation for the velocity potential is solved by the method of relaxation, after the flow exterior to the airfoil is mapped to the upper half plane; (4) the mapping procedure allows exact satisfaction of the boundary conditions and use of supersonic free stream velocities; (5) the finite difference operator is locally rotated in supersonic flow regions so as to properly account for the domain of dependence; and (6) the relaxation algorithm was stabilized using criteria from a time-like analogy

    Comparison of calculated and measured pressures on straight and swept-tip model rotor blades

    Get PDF
    Using the quasi-steady, full potential code, ROT22, pressures were calculated on straight and swept tip model helicopter rotor blades at advance ratios of 0.40 and 0.45, and into the transonic tip speed range. The calculated pressures were compared with values measured in the tip regions of the model blades. Good agreement was found over a wide range of azimuth angles when the shocks on the blade were not too strong. However, strong shocks persisted longer than predicted by ROT22 when the blade was in the second quadrant. Since the unsteady flow effects present at high advance ratios primarily affect shock waves, the underprediction of shock strengths is attributed to the simplifying, quasi-steady, assumption made in ROT22

    On the Propagation of Slip Fronts at Frictional Interfaces

    Get PDF
    The dynamic initiation of sliding at planar interfaces between deformable and rigid solids is studied with particular focus on the speed of the slip front. Recent experimental results showed a close relation between this speed and the local ratio of shear to normal stress measured before slip occurs (static stress ratio). Using a two-dimensional finite element model, we demonstrate, however, that fronts propagating in different directions do not have the same dynamics under similar stress conditions. A lack of correlation is also observed between accelerating and decelerating slip fronts. These effects cannot be entirely associated with static local stresses but call for a dynamic description. Considering a dynamic stress ratio (measured in front of the slip tip) instead of a static one reduces the above-mentioned inconsistencies. However, the effects of the direction and acceleration are still present. To overcome this we propose an energetic criterion that uniquely associates, independently on the direction of propagation and its acceleration, the slip front velocity with the relative rise of the energy density at the slip tip.Comment: 15 pages, 6 figure

    Rapid End-Point Quantitation of Prion Seeding Activity with Sensitivity Comparable to Bioassays

    Get PDF
    A major problem for the effective diagnosis and management of prion diseases is the lack of rapid high-throughput assays to measure low levels of prions. Such measurements have typically required prolonged bioassays in animals. Highly sensitive, but generally non-quantitative, prion detection methods have been developed based on prions' ability to seed the conversion of normally soluble protease-sensitive forms of prion protein to protease-resistant and/or amyloid fibrillar forms. Here we describe an approach for estimating the relative amount of prions using a new prion seeding assay called real-time quaking induced conversion assay (RT-QuIC). The underlying reaction blends aspects of the previously described quaking-induced conversion (QuIC) and amyloid seeding assay (ASA) methods and involves prion-seeded conversion of the alpha helix-rich form of bacterially expressed recombinant PrPC to a beta sheet-rich amyloid fibrillar form. The RT-QuIC is as sensitive as the animal bioassay, but can be accomplished in 2 days or less. Analogous to end-point dilution animal bioassays, this approach involves testing of serial dilutions of samples and statistically estimating the seeding dose (SD) giving positive responses in 50% of replicate reactions (SD50). Brain tissue from 263K scrapie-affected hamsters gave SD50 values of 1011-1012/g, making the RT-QuIC similar in sensitivity to end-point dilution bioassays. Analysis of bioassay-positive nasal lavages from hamsters affected with transmissible mink encephalopathy gave SD50 values of 103.5–105.7/ml, showing that nasal cavities release substantial prion infectivity that can be rapidly detected. Cerebral spinal fluid from 263K scrapie-affected hamsters contained prion SD50 values of 102.0–102.9/ml. RT-QuIC assay also discriminated deer chronic wasting disease and sheep scrapie brain samples from normal control samples. In principle, end-point dilution quantitation can be applied to many types of prion and amyloid seeding assays. End point dilution RT-QuIC provides a sensitive, rapid, quantitative, and high throughput assay of prion seeding activity

    Anti-PrP antibodies block PrPSc replication in prion-infected cell cultures by accelerating PrPC degradation.

    Get PDF
    manuscript received October 15, 2003; revised manuscript received December 15, 2003; accepted December 16, 2003. We thanks P. Rondard, O Bischof, J.-L. Laplanche and J.-P. Pin for their fruitful discussions. we are grateful to S. barrère for her assistance in the statistical analysis of the data and H. McMahon for her assistance in reading the manuscript

    Stereotype-based priming without stereotype activation: A tale of two priming tasks

    Get PDF
    An extensive literature has demonstrated stereotype-based priming effects. What this work has only recently considered, however, is the extent to which priming is moderated by the adoption of different sequential-priming tasks and the attendant implications for theoretical treatments of person perception. In addition, the processes through which priming arises (i.e., stimulus and/or response biases) remain largely unspecified. Accordingly, here we explored the emergence and origin of stereotype-based priming using both semantic- and response-priming tasks. Corroborating previous research, a stereotype-based priming effect only emerged when a response-priming (vs. semantic-priming) task was used. A further hierarchical drift diffusion model analysis revealed that this effect was underpinned by differences in the evidential requirements of response generation (i.e., a response bias), such that less evidence was needed when generating stereotype-consistent compared with stereotype-inconsistent responses. Crucially, information uptake (i.e., stimulus bias, efficiency of target processing) was faster for stereotype-inconsistent than stereotype-consistent targets. This reveals that stereotype-based priming originated in a response bias rather than the automatic activation of stereotypes. The theoretical implications of these findings are considered. </jats:p

    How prioritized is self-prioritization during stimulus processing?

    Get PDF
    Recent research has suggested that self-relevance automatically enhances stimulus processing (i.e., the self-prioritization effect). Notably, information associated with one’s self elicits faster responses than comparable material associated with other targets (e.g., friend, stranger). Challenging the assertion that self-prioritization is an obligatory process, here we hypothesized that self-relevance only facilitates performance when task sets draw attention to previously formed target-object associations. The results of two experiments were consistent with this viewpoint. Compared with arbitrary objects owned by a friend, those owned by the self were classified more rapidly when participants were required to report either the owner or identity of the items (i.e., semantic task set). In contrast, self-relevance failed to facilitate performance when participants judged the orientation of the stimuli (i.e., perceptual task set). These findings demonstrate the conditional automaticity of self-prioritization during stimulus processing
    corecore