NASA TECHNICAL MEMORANDUM

NASA TM X-73996 (NASA-TM-X-73596) a EEIEF LESCRIPTION OF *77-15977 Tia Jameson-Ciughey dyu franiscuic shept-wIng COMPUTEA FKOGFAM: FLC 22 Interim Feport (NASA) $34 \mathrm{pHCAO} / \mathrm{HE}$ AO1 CSCI O1A
A BRIEF DESCRIPTION OF THE JAMESON-CAUGHEY
NYU TRANSONIC SWEPT-WING COMPUTER -
PROGRAM - FLO 22

Antony Jameson, David A. Caughey, Perry A. Newman, and Ruby M. Davis

December 1976

This informal documentation medium is used to provide accelerated or epectal release of technical information to selected users. The contents may not meet NASA formal editing and publication standards, may be revised, or may be incorporated in another publication.

> MATIONAL AERONAUTICS AMD SPACE ADMINISTRATIOM LAMGLE RESEARCH CENTER, HAMPTOM; VRGIHIA 23G6S

16. Abstract

Prof. Antony Jameson (NYU) and Prof. Dave Caughey (Cornell) have developed this computer program for analyzing inviscid, isentropic, transonic flow past 3-D swe?twing configurations. This work was done at the Courant Institute of Matheratical Sciences, New York lniversity, under NASA Grants NGR-33-016-167 and NGR-33-016-201. Some basic aspects of the program are: The free-stream Mach number is restricted only by the isentropic assumption. Weak shock waves are automatically located where ever they occur in the flow. The finite-difference form of the full equation for the velocity potential is solved by the method of relaxation, after the flow exterior to the airfoil is mapped to the upper half plane. The mapping procedure allows exact satisfaction of the boundary conditions and use of supersonic free stream velocities. The finite difference operator is "locally rotated" in supersonic flow regions so as to properly account for the domain of dependence. The relaxation algorithm has been stabilized using criteria from a time-like analogy. The brief description contained in this document should enable one to use the program until a formal user's manual is available.

URIGINAL PAGE TG OF POOR QUALLTY

17. Key Words (Suggested by Author(s))

Aerodynamics

Transonic Flow Compressible Flow Wings
18. Distritution Statement Unclassified-Unlimited

A BRIEF DESCRIPTION OF THE JAMESON-CAUGHEY NYU TRANSONIC SWEPT-WING COMPUTER

PROGRAM - FLO 22
Antony Jameson (NYU)
David A. Caughey (Cornell)
Perry A. Newman (NASA)
Ruby M. Davis (NASA)

Langley Research Center

PREFACE

This document was prepared by the third and fourth authors to serve as an interim user guide for the Jameson-Caughey NYU Transonic Swept-Wing Computer Program - FLO 22. This information is pertinent to the version provided to NASA LaRC in the spring of 1976. The first and second authors are in the process of preparing more extensive documentation on a later version of program FLO 22. This document is intended to meet several immeciate demands for use-of this computer code in NASA-sponsored programs.

The first two sections entitled "Calculation of the Flow Past a Swept Wing" and "Some Results of Swept Wing Calculations" are sections 5.7 and 5.8 of reference 1 wich very minor editing. The last section entitled "Input Description" is an update of reference 2 (an input description for Jameson's yawed wing program - FLO 17) which includes the swept-wing input parameters.

SUMMARY

Profi. Antony Jameson (NYU) and Prof. Dave Caughey (Cornell) have developed this computer program for analyzing inviscid, isertropic, transonic flow past 3-D swept-wing configurations. This wori was done at the Courant Institute of Mathematical Sciences, Tiew York University, under NASA Grants NGR-33-016-167 and :GR-33-016-201. Some basic aspects of the progran are: The free-stream Mach number is restricted only by the isentropic assumption. Weak shock waves are automatically located where ever they occur in the flow. The finite-difference form of the full equation for the velocity potential is solved by the method of relaxation, after the flow exterior to the airfoil is mapped to the upper half plane. The mapping procedure allows exact satisfaction of the boundary conditions and use of supersonic free stream velocities. The finite difference operator is "locally rotated" in supersonic flow regions so as to properly account for the domain of dependence. The relaxation algorithm has been stabilized using criteria from a time-like analogy. The brief description contained in this document should enable one to use the program unti] a formal user's manual is available.

CALCULATION OF THE FLOW PAST A SWEPT WING
It is desired to solve the three-dimensional potential flow equation which can be written in quasilinear form as

$$
\begin{align*}
\left(a^{2}-u^{2}\right) \phi_{x x} & +\left(a^{2}-v^{2}\right) \phi_{y y}+\left(a^{2}-w^{2}\right) \phi_{z z} \\
& -2 u v \phi_{x y}-2 v w \phi_{y z}-2 u w \phi_{x z}=0 \tag{1}
\end{align*}
$$

where u, v and w are the velocity components and a is the local speed of sound. The singutarity at infinity in the velocity potential is removed by introducing a reduced potential

$$
\begin{equation*}
G=\phi-x \cos \alpha-y \sin \alpha \tag{2}
\end{equation*}
$$

where α is the angle of attack.

In the case of a lifting flow the velocity potential is discontinuous across the vortex sheet trailing behind the wing. Roll up of the vortex sheet will be ignored: the conditions to be satisfied at the surface in which the vortex sheet is assumed to lie are that the jump r-in the potential is constant along lines parallel to the free stream, and that the normal component of velocity is continuous through the sheet. At infinity the iow is undisturbed except in the Trefftz plane far downstream where there will be a tro dimensional flow induced by the vortex sheet.

The construction of a satisfactory curvilinear coordinate system to suit the geometry of the conficuration is one of the most difficult aspects of the three dimensional problem. Here nonorthogonal coordinates will be generated by a sequence of elementary transformations. First parabolic coordinates are introduced in planes containing the wing section by the square root transformation

$$
\begin{equation*}
x_{1}+i y_{1}=\left[x-x_{0}(z)+i\left(y-y_{0}(z)\right)\right]^{1 / 2}, z_{1}=z \tag{3}
\end{equation*}
$$

where z is the spanwise coordinate, and x_{0} and y_{0} define a singular line of the coordinate system located just insicic the leading edge (see Figures 1 and 2). The effect of this transformation is to unwrap the wing to form a shallow bump

FIGURE 1. CONFIGURATION OF SWEPT WING

$$
\begin{equation*}
y_{1}=s\left(x_{1}, z_{1}\right) \tag{4}
\end{equation*}
$$

Then a shearing transformation is used

$$
\begin{equation*}
x=x_{1}, \quad y=y_{1}-s\left(x_{1}, z_{1}\right), \quad z=z_{1} \tag{5}
\end{equation*}
$$

to map the wing surface to a coorcinate surface. Finally, in order to obtain a finite computational domain X, Y and 2 are replaced by stretched cooreinates $\overline{\operatorname{Li}}, \overline{\bar{Y}}$ and $\overline{\mathrm{z}}$. The stretching used in the present computer program is to set $X=\bar{X}$ in an innex comain $-\bar{Y}_{m} \leq \bar{X} \leq \bar{X}_{m}$, and to set

$$
\begin{equation*}
x=\bar{x}_{m}+\left(\bar{x}-\bar{x}_{m}\right) /\left\{1-\left(\frac{\bar{x}-\bar{x}_{m}}{1-\bar{x}_{m}}\right)^{2}\right\}^{\alpha} \tag{6}
\end{equation*}
$$

when $\bar{x}>\bar{X}_{m}$, with a corresponcing formula when $\bar{X}<-\bar{X}_{m}$, so that $X= \pm \infty$ when $\bar{X}= \pm 1$. Typically the parameter a has the value 1/2. Similar stretchings are used for Y and z.

The vortex sheet is assumed to coincide with the cut behind the singular line wich is opened up by the scuare root transformation (Eq. (3)). Thus a jump \bar{i} is introduced in the potential between corresponding points representing the two sides of the vortex sheet. A complication is caused by the continuation of the cut beyond the ving. points on the two sides of the cut must be identified as the same point in the physical space. Also a special form of the cquations must be used at points lying on the singuiar
line beyond the wing. At these points the equation to be satisfied reduces to the two dimensional Laplace equation in the Y_{1} and Y_{1} coordinates. An advantage of the square root transformation (Eq. (3)) is that il collapses the height of the disturbance due to the vortex sheet to zero in the parabolic coordinate system at points far downstream, where x_{1} approaches infinity, with the result that the far field boundary condition is simply

$$
\begin{equation*}
G=0 \tag{7}
\end{equation*}
$$

The final equation for the reduced potential G contains numerous terms. In order to construct a rotated difference scheme with a proper upwind bias at supersonic points it is only necessary, however, to consider the principal part, consisting of the terms containing the second derivatives of G. Suppose that equation (1) is written in the canonical form

$$
\begin{equation*}
\left(a^{2}-q^{2}\right) \phi_{s s}+a^{2}\left(\Delta \phi-\phi_{s s}\right)=0 \tag{8}
\end{equation*}
$$

where Δ is the Laplacian operator $\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}$ and $\phi_{S S}$ is the streamise second derivative in a Cartesian coordinate system locally aligned with the flow

$$
\phi_{s s}=\frac{1}{q^{2}}\left(u^{2} \phi_{X X}+v^{2} \phi_{Y Y}+w^{2} \phi_{z Z}+2 u v \phi_{X Y}+2 v w \phi_{Y Z}+2 u w \phi_{X Z}\right)
$$

Then at supersonic points upwind difference formulas are used
for all second derivatives of G arising from the transformation of $\phi_{s s}$ into the curvilinear coorainate system, and
 arising from the transformation of $\Delta \varphi-{ }^{-}$ss. The Eormunaticn in terms of the Laplacian avoids the need to deter..ire explicitly a pair of local coordinate directions normel to the stream cirection.

The difference equations are solved by relaxation, with care taken to make sure that at supersonic points the equivalent time dependent equation is compatible with the steady state equation. If m and n are coordinates in a plane normal to the streamwise direction s, and A is the local Mach number q / a, the equivalent time dependent equation can be written in the form

$$
\begin{equation*}
\left(\mathrm{N}^{2}-1\right) \phi_{\mathrm{ss}}-\phi_{\mathrm{mm}}-\phi_{\mathrm{nn}}+2 \alpha_{1} \phi_{s t}+2 \alpha_{2} \phi_{\mathrm{mt}}+2 \alpha_{3} \phi_{n t}+\gamma \phi_{t}=0 \tag{10}
\end{equation*}
$$

where the coefficients α_{1}, α_{2} and α_{3} depend on the split between new and old values used in the relaxation scheme. To make sure that this is a wave equation with s as the timelike direction, an analysis indicates that the difference formulas should be organized so that

$$
\begin{equation*}
a_{1}>\sqrt{\left(x^{2}-1\right)\left(a_{2}^{2}+a_{3}^{2}\right)} \tag{11}
\end{equation*}
$$

Also the balanced coefficient rule should still be applied in the supersonic zone, corresponding to a zero coefficient of ϕ_{t} in equation (10). It is converient to soive the equations for the correctic: to the potential simultaneously along lines, corresponcing to a point relaxation process in two dimensions. fry of the coordinate lines can be used for this purpose, the choice being guided by the need to avoid advancing through the supersonic zone in a direction opposed to the flow. In practice it has been found convenient to divide each \bar{X}, \bar{Y} plane into three strips, and to march towards the wing surface in each central strip, upaating horizontal lines, and then outwards in the left-hand and right-hand strips, updating vertical lines. (See Figure 3.)

VERTICAL LINE RELAMITIO::

HORIZONTAL LINE KELAKATION

FIGURE 3. MARCHING DIFECTIONS OF PELAXATION SCHEME
FOR SNEDT WING CALCULATION

Some results of swept wing calculations are presented
-n Fisures 4 and 5 . These were calculated on a grid
with 144 ceiis in the chordwise X direction, 24 cells in the normal y direction and 32 cells in the spanwise z direction, calling for the solution of the difference equations at 109824 mesh points. In each case the interpolated result of a preliminary calculation on a $72 \times 12 \times 16$ gric was used to provide the starting guess: 200 cycles were used on the coarse grid followed by 100 cycles on the fine grid. Such a calculation requires about 80 minutes on a CDC 6600 (which should be reduced to about 20 rinutes on a CDC 7600).

Figure 4 shows the result of a calculation for a rather simple wing tested by ONERA, for which experinental diata has been published. It can be seen from Figures 4(c) and $4(d)$ that the agreement with the experimental
data is quite good, despite the fact that no attempt was made to allow for viscous effects. As in the case of the two dimensional calculations, the nonconservative difference scheme introduces a socrce distribution over the shock surfaces, causing a displacement of the streamlines and a forward shift in the location of the shock waves. Apparently this partially compensates for the absence of a correction for the displacement effect of the boundary layer.

To illustrate the geometric complexity of the configurations which can be treated by the program, figure j shows the results of a calculation for a wing designed and tested by the Douslas Aircraft Company. The wins
is a typical design for a long range transport aircraft, with a sweepback of 35 cegrees at the leading edge, and a substantial change in the section between the root and tip. The test was of a wing-boay combination. In the calculation the wing was extenced to the plane of symmetry at the fuselage center line. The calculation shows two shock waves over the inboard part of the wing. The forward shock wave originates from the leading edge at the wing root, and the aft shock wave is roughiy normal to the free stream. The two shock viaves merge at about the $1 / 4$ span foint, forming a triangular shock pattern over the upper surface of the wing. The coalescence of the shock waves can be traced in Figures 5(c) - 5(g), in which the pressure distributions at a sequence of span stations over the inboard part of the wing are plotted separately, the convergence history of this calculation, measured by the largest residual, is shown in Figuse 6.

VIEW OF RING

PER SURFACE PRESSURE
LOHER SURFACE PRESSURE

3:Efif	$\cdots H G N 6$	L.E.	SWEEF 20	LE3 AS	PECT
NAFCH	.9?3	YAW	0.000	FLFHA	0.000
L/D	-.00	CL	-.cico	CD	. 0246

L.E. SHEEP ≥ 0 DEG

YAM $\quad 0.000$
CL $\quad-.0000$

- EXPERIMENT

ASPECT RATIO 3.8 ALPHA

0,000
CD .0242

OHERA HIIIG Mí	L.E. SHEEP 30 DEG
MACH . 923	YAH 0.000
. 80	CL - .0000
Tirare	LXIMRIMENT
	Flitili 4(d)

ASPECT RATIO 3.0
ALPHA 0.000
CD \quad POM

VIEW OF WING

MRCH	.819	YAN	0.000	FILPHA	0.000
L/D	23.86	CL.	.5882	CD	.0247

UPPER SURFACE PRESSURE
LOWER SURFACE PRESSURE

çunila	11:3	(E)	C TS	,	NE!
MACH	8:9	YFin	C.000	GLPHA	0.000
L/T	23.85	CL	. 5858.	CD	. 0247

FIGURE 5(1)

DCUCLAS	$\because 1 / \mathrm{NG}$	16	070	FR L	
MACH	. 819	YAK!	0.000	ALPHA	0.000
Z	2.40	CL	. 5060	CD	. 0667

FIGURE 5(D)

$\}$

MACH	.819	YAW	0.000	ALPHIA	0.02 E
Z	7.20	CL	.6263	CD	-.005

FIUURE 5(F)

deuglas hing we (extended to center lies) $\begin{array}{llllll}\mathrm{MFCH} & .819 & \text { YAW } & 0.000 & \text { ALPHF } & 2.002 \\ Z & 9.60 & \mathrm{CL} & .6475 & \mathrm{CD} & -.0160\end{array}$

FIGURE 5(G)

FIGURE f,

5eai Oraer	Number Cards	Lescription and Corments
1	1	TITLE. - Descriptive title of case or sequesse; Format (8A10) Appears on Varian Plots and beginning of output.
2	1	DSSC. - Description for card in Read Order 3 Format (8A10).
3	1	FNX, FNY, FNZ, FPLOT, XSCALE, PSCALE, FCONT Format (8E10.7)
		تicte: A number of qiantities are $x \in a d$ in $\frac{s s \text { ficating-point numbers ard cc:rerted }}{\text { ic }}$ integers withir the fracram.
		Fix. - Number of computational grid points in "chordwise direction" from domstream infinity, around the leading edge and back to downstream infinity on coresest mesh. Veximu: is 96 (192 with :. 른ia halving).
		FNY. - Number of computational grid points in "normal direction" from eirfoil surface to infiaity on coarsest resh. $\mathrm{Hax}=\mathrm{mim}$ is 12 (24 with ne grid halving).
		FNZ. - Number of computational grid points in "spanvise direction" from infinity, across the wing sjan and to infinity on coarsest mesh. Maximum is 16 (32 with no gria haiving).

FPLOT. - Plot trigger. Selects type of plot for chordwise surface pressure coefficients. FPLOT $=0$. Printer plots, one at each spanwise grid plane section with C? versus the computational grid chordwise variable.

Read	Number
Order	Cards

Descripticr end Coments
FPIOT = 1. Varian Elots (from TrPEED). These are superimese: Elots, with all spen sections show: cr tion íieires, an upper surface and a lower surfeace plot Of $C P$ versus physical space oboríwise variable.

FPLOT = 2. Varian plots (from THREED) as above plus section plots (from GRAPH). These latter piots; one per section, give upper and lower surface $C P$ versus physical space choržinse variable.

Defaults to zero

XSCALE. - Scale of abcissa in pressure plots at each wing station: XSCALE >0. , Length of section airfoil chord (in inches); XSCALE $=0 ., 5-$ inch section chord; XSCALE < 0 . Length of maximum section airfoil chord will be |XSCALE| inches on plot. All other section plots will be scaled according to wing planform.

PSCALE. - Scale of ordinate in pressure plots, C_{r} on plot: PSCALE $=0 .,-.4$ per inch. PSCALE $\ddagger 0.1-|P S C A L E|$ per inch.

FCONT. - Program starting/continuing trigger. FCONT $=0$. . Calculation begins at iteration zero. FCONT = 1., Calculation is to be continued from a previous one.

DESC. - Description for card in Read Orâer 5 Format (8A10).

FIT, COVO, P10, P2O, P30, BETAC, STRIPO, FHALF Format (8E10.7)

FIT. ." Maximum number of iterations on this gird, called MTT in program,

COVO. - Convergence criterion on the maximum change in reduced velocity potential (G) from one iteration cycle to the next on this zria.

6	1	DESC.		Description for card in Read Order 7 Format (8 A 10).
7	1	FMACH,		$\begin{aligned} & \text { AL, CDO } \\ & \text { Format (8E10.7) } \end{aligned}$
		FMACH.	-	Freestream Mach number.
		YA.	-	Yaw ängle (in degrees).
		AL.		Angle of attack (in degrees) measured in plane containing freestream direction.
		CDO.		Drag coefficient due to skin friction (CD FRICTION on Cutput). This input number is added to the drae coefficient obtained by integratiag the surface pressures (C : $F(\operatorname{RH}$: on output).

Read	Number
Order	Cards

Description and Comments

Fead Orders 8 through 19 are used to specify the wing geometry (in physical space, of course). One car define the wing at up to 11 span stations. A set of airfoil coordinstes must be read in at the first station. It need not be read in at other stations, if one is changing-only combinations of the following three airfoil section parameters: chord, thickness ratio or argle of attack (trist). The wing shape at intermediate span positions (i.e., the computationai srid planes for example) is obtained by linear... interpolation in the spanwise direction in the physical space.

Read Croers 8 and 9 are read only once: 10 and 11 are read FNC (see 9) times; 12 througio 17 (19 if non-symmetric airfoil section) must be read at first section and may be required at other sections, depending on the wing geometry.

8 DESC. - Description for card in Read Order 9 Formet (8A10).

ZSYM, FNC, SWEEP 1, SWEEP 2, SWEEP, DIHED 1, DIHED 2, DIHED

ZSYM. - Wing planform symmetry trigger: ZSMM = 0, yawed wing ZSYM $=1$, swept wing

FNC. - Must be ≥ 3. The leading edge of the wing in physical space is fit with a cubic spline. Data at three span stations are required (as minimum) as w2ll as the six angles which follow. If the wing leading edge has a slope discontinuity, three stations should be used fairly close to it.

SWEEP 1. - Sweep angle of wing leading edge at root section (in degrees).

SWEEP 2. - Sweep angle of wing leading edge at tip section (in degrees).

SWEEP. - Sweep angle of spanwise grid ines at ∞ (off tip of wing) (in degrees).

DTHED 1 - - Dihedral angle of wing leading edge at root section (in degrees).

DIHED 2. - Dihedral angle of wing leading edge at tip section (in degrees).

DIHED. - Dihedral angle of spanwise grid lines at ∞ (off tip of wing) (in degrees).

Read orcer	Number Cards		Description and Corment
$\div 0$	1	Dasc.	- Description for cards ir. ミiza frier il Format (8AO).
11	1	2S(k),	XL, YL, CHORD, THICK, AL, FSEC Format (8E10.7)
		zS(K).	- Spanwise coordinate of the wing section being specified.- It is in the same units-as CHORD. These stations are ordered from tip-to=tip, in ascending algebraic order of $2 \mathrm{~S}(\mathrm{~K})$ for yawed wing and root-to-tip for swept wing.
			- X coordinate of section leading edge in physical space (controls sweep).
		YL.	- Y coordinate of section leading edge in physical space (controls dihedral).

CHORD. - Section chord length. The chord of the airfoil coordinates to be read in (or already read in at the prior station) will be scaled to this value.

THICK. - Section thickness ratio relative to that of the airfoil coordinates to be read in (or already read in at the prior station). Note, this is a retio of thickness/chord ratios. The thickness of the airfoil coordinates will be scaled with this value.-

AL. - Section angle of attack or twist (in degrees). Airfoil coordinates will be rotated through tifis angle about LE.

FSEC. - Section airfoil coordinate trigger. FSEC $=0$. Do not read airfoil coorainates. Last set of airfoil coordinates read will be used at this section. They may be scaled by any combination of CHOKD, THICK, or AL read above. Skip Read Orders $i 2$ through 19 for this section.

Pead Number
Orcer Ceras

Description and Comments
zislic．－X coordinate of the arigin of the mapping referenced to the airfoil leading edge．Recommend approximately X（LE）$+1 / 2$ leading edge radius where $R_{L E}$ is in the same units as XP（I）read below．

YSIiG．－Y coordinate of the origin of the rapping referenced to the airfoil． ieajing edge．Recomeñ approximately $Y(5)$ ．

DESC．－Description for cards in Read Crier 17 Formet（8A10）．
$\dddot{X}=I \prime, \quad Y P(I)$ Eォrmet（0）
XI＇I．．－X coordinate of airfoil upper surface， ordered leading eage tc trailing edge．

ごミ’I．－I coordinete of airfoil upper surface， craered leading eãge T ： railing edge． Dote that there is only one pair of coordinates per card．

If airfoil section is not symetric（FSYM＜10）the airfoil lower surface cocrinates must be read bere．For symetric airfoil（FSYMI．），skip the tric Eead Criezs 18 and 29.

181 DESC．－Description for cards in Read Order 19 Format（8A10）．

19 FNL VAJ，DUM－Format（8ELO．7）
VAL．－X coordinate of airfoil lower surface， ordered leading edge to trailing edge．

DUM．－Y coordinate of airfoil lower surface， ordered leading edge to trailing edge． Note that there is only one pair of coordinates per card．

Read Oriers 10 through 19 complete the input for one span station．As indicased above Reaf Crier 8 ，at least Read Orders 10 and 11 must be repeated for the remaning FiC－2 sections whe：FNC 23 ．
iRIGINAL PAGL IE
M POOR QUALIIE

```
Read Nimber
Order Cerds
```


Description and Comments

The prograr terminates by reȧi=s the first three Read Orders with FNX<?.; that is 2 last three cards for E normal stop should be:

1	1	MITE. - End of Calculation
2	1	DESC.
3	1	0. Description for card in Reai Order 3

REFFRENCES

1. Jameso: , Antony: Transonic Flow Calculations. Presented at the Lecture Series on Computational Fluid Dynamics, March 15-19, 1976, von Karman Institute, Rhode-St-Genese, Belgiur. (Lecture notes to be published.)
2. Newman, P. A.; and Davis, R. M.: Input Description for Jameson's ThreeDimensional Transonic Airfoil Analysis Program. NASA TMX-71919, 1974.
