35 research outputs found

    Tunneling spectroscopy of few-monolayer NbSe2_2 in high magnetic field: Ising protection and triplet superconductivity

    Full text link
    In conventional Bardeen-Cooper-Scrieffer (BCS) superconductors, Cooper pairs of electrons of opposite spin (i.e. singlet structure) form the ground state. Equal spin triplet pairs (ESTPs), as in superfluid 3^3He, are of great interest for superconducting spintronics and topological superconductivity, yet remain elusive. Recently, odd-parity ESTPs were predicted to arise in (few-)monolayer superconducting NbSe2_2, from the non-colinearity between the out-of-plane Ising spin-orbit field (due to the lack of inversion symmetry in monolayer NbSe2_2) and an applied in-plane magnetic field. These ESTPs couple to the singlet order parameter at finite field. Using van der Waals tunnel junctions, we perform spectroscopy of superconducting NbSe2_2 flakes, of 2--25 monolayer thickness, measuring the quasiparticle density of states (DOS) as a function of applied in-plane magnetic field up to 33T. In flakes \lesssim 15 monolayers thick the DOS has a single superconducting gap. In these thin samples, the magnetic field acts primarily on the spin (vs orbital) degree of freedom of the electrons, and superconductivity is further protected by the Ising field. The superconducting energy gap, extracted from our tunnelling spectra, decreases as a function of the applied magnetic field. However, in bilayer NbSe2_2, close to the critical field (up to 30T, much larger than the Pauli limit), superconductivity appears to be more robust than expected from Ising protection alone. Our data can be explained by the above-mentioned ESTPs

    Hybrids of the bHLH and bZIP Protein Motifs Display Different DNA-Binding Activities In Vivo vs. In Vitro

    Get PDF
    Minimalist hybrids comprising the DNA-binding domain of bHLH/PAS (basic-helix-loop-helix/Per-Arnt-Sim) protein Arnt fused to the leucine zipper (LZ) dimerization domain from bZIP (basic region-leucine zipper) protein C/EBP were designed to bind the E-box DNA site, CACGTG, targeted by bHLHZ (basic-helix-loop-helix-zipper) proteins Myc and Max, as well as the Arnt homodimer. The bHLHZ-like structure of ArntbHLH-C/EBP comprises the Arnt bHLH domain fused to the C/EBP LZ: i.e. swap of the 330 aa PAS domain for the 29 aa LZ. In the yeast one-hybrid assay (Y1H), transcriptional activation from the E-box was strong by ArntbHLH-C/EBP, and undetectable for the truncated ArntbHLH (PAS removed), as detected via readout from the HIS3 and lacZ reporters. In contrast, fluorescence anisotropy titrations showed affinities for the E-box with ArntbHLH-C/EBP and ArntbHLH comparable to other transcription factors (Kd 148.9 nM and 40.2 nM, respectively), but only under select conditions that maintained folded protein. Although in vivo yeast results and in vitro spectroscopic studies for ArntbHLH-C/EBP targeting the E-box correlate well, the same does not hold for ArntbHLH. As circular dichroism confirms that ArntbHLH-C/EBP is a much more strongly α-helical structure than ArntbHLH, we conclude that the nonfunctional ArntbHLH in the Y1H must be due to misfolding, leading to the false negative that this protein is incapable of targeting the E-box. Many experiments, including protein design and selections from large libraries, depend on protein domains remaining well-behaved in the nonnative experimental environment, especially small motifs like the bHLH (60–70 aa). Interestingly, a short helical LZ can serve as a folding- and/or solubility-enhancing tag, an important device given the focus of current research on exploration of vast networks of biomolecular interactions

    Processos de democracia direta: sim ou não? Os argumentos clássicos à luz da teoria e da prática

    Get PDF
    Regularmente surgem controvérsias sobre os processos de democracia direta, dos quais os mecanismos mais frequentes são a iniciativa popular, o plebiscito e o referendo. Por um lado, há autores que defendem a posição de que essas instituições tornam o jogo político mais lento, caro, confuso e ilegítimo; outros defendem a posição contrária e argumentam que processos de democracia direta são fundamentais para os cidadãos e a qualidade da democracia. O presente estudo analisa esse tema em torno de sete questões, baseadas em considerações teóricas e pesquisas empíricas: 1. A questão entre o minimalismo e o maximalismo democrático; 2. A concorrência entre maioria e minoria; 3. A concorrência entre as instituições representativas e os processos de democracia direta; 4. A questão da competência dos cidadãos; 5. A questão dos efeitos colaterais dos processos de democracia direta; 6. A questão do tamanho do eleitorado; 7. A questão dos custos dos processos de democracia direta. As sete questões são analisadas a partir de uma revisão bibliográfica que considera tanto fontes nacionais como internacionais. O estudo mostra que os processos de democracia direta podem ser um complemento para as instituições representativas em um sistema democrático. O bom desempenho dos plebiscitos, referendos e iniciativas populares depende tanto da regulamentação destes como também do desempenho das outras instituições políticas e da situação socioeconômica de um país. O estudo permite ampliar e aprofundar o debate sobre processos de democracia direta no Brasil

    Tunneling spectroscopy of few-monolayer NbSe2 in high magnetic fields: Triplet superconductivity and Ising protection

    No full text
    In conventional Bardeen-Cooper-Schrieffer superconductors, Cooper pairs of electrons of opposite spin (i.e., singlet structure) form the ground state. Equal-spin triplet pairs (ESTPs), as in superfluid He3, are of great interest for superconducting spintronics and topological superconductivity, yet remain elusive. Recently, odd-parity ESTPs were predicted to arise in (few-)monolayer superconducting NbSe2, from the noncollinearity between the out-of-plane Ising spin-orbit field (due to the lack of inversion symmetry in monolayer NbSe2) and an applied in-plane magnetic field. These ESTPs couple to the singlet order parameter at finite field. Using van der Waals tunnel junctions, we perform spectroscopy of superconducting NbSe2 flakes, of 2-25 monolayer thickness, measuring the quasiparticle density of states (DOS) as a function of applied in-plane magnetic field up to 33 T. In flakes ≲15 monolayers thick the DOS has a single superconducting gap. In these thin samples, the magnetic field acts primarily on the spin (vs orbital) degree of freedom of the electrons, and superconductivity is further protected by the Ising field. The superconducting energy gap, extracted from our tunneling spectra, decreases as a function of the applied magnetic field. However, in bilayer NbSe2, close to the critical field (up to 30 T, much larger than the Pauli limit), superconductivity appears to be more robust than expected from Ising protection alone. Our data can be explained by the above-mentioned ESTPs. QRD/Kouwenhoven La

    Tunneling spectroscopy of few-monolayer NbSe2_2 in high magnetic field: Ising protection and triplet superconductivity

    No full text
    Using van der Waals tunnel junctions, we perform spectroscopy of superconducting NbSe2\mathrm{NbSe_2} flakes, of thicknesses ranging from 2--25 monolayers, measuring the quasiparticle density of states as a function of applied in-plane magnetic field up to 33T. In flakes up to \approx 15 monolayers thick, we find that the density of states is well-described by a single band superconductor. In these thin samples, the magnetic field acts primarily on the spin (vs orbital) degree of freedom of the electrons, and superconductivity is further protected by Ising spin-orbit coupling (ISOC), which pins Cooper pair spins out-of-plane. The superconducting energy gap, extracted from our tunnelling spectra, decreases as a function of the applied magnetic field. However, in bilayer NbSe2\mathrm{NbSe_2}, close to the critical field (up to 30T, much larger than the Pauli limit), superconductivity appears to be even more robust than expected if only ISOC is considered. This can be explained by a predicted subdominant triplet component of the order parameter, coupled to the dominant singlet component at finite field. This equal-spin, odd-parity triplet state arises from the non-colinearity between the applied magnetic field and the Ising field

    Tunneling spectroscopy of few-monolayer NbSe2 in high magnetic fields: Triplet superconductivity and Ising protection

    Get PDF
    Funding Information: We acknowledge valuable discussions with Pascal Simon and Freek Massee and thank the latter for a careful reading of the manuscript. This work was funded by a Maimonides-Israel grant from the Israeli-French High Council for Scientific and Technological Research; JCJC (SPINOES), PIRE (HYBRID), and PRC (TRIPRES) grants from the French Agence Nationale de Recherche; European Research Council Starting Grant No. ERC-2014-STG 637928 (TUNNEL); Israel Science Foundation Grants No. 861/19 and No. 2665/20, and the Laboratoire d'Excellence LANEF in Grenoble (ANR10-LABX-51-01). T.D. is grateful to the Azrieli Foundation for an Azrieli Fellowship. Part of this work has been performed at the Laboratoire National de Champs Magnétiques Intenses (LNCMI), a member of the European Magnetic Field Laboratory (EMFL).In conventional Bardeen-Cooper-Schrieffer superconductors, Cooper pairs of electrons of opposite spin (i.e., singlet structure) form the ground state. Equal spin triplet pairs (ESTPs), as in superfluid 3He, are of great interest for superconducting spintronics and topological superconductivity, yet remain elusive. Recently, odd-parity ESTPs were predicted to arise in (few-)monolayer superconducting NbSe2, from the noncollinearity between the out-of-plane Ising spin-orbit field (due to the lack of inversion symmetry in monolayer NbSe2) and an applied in-plane magnetic field. These ESTPs couple to the singlet order parameter at finite field. Using van der Waals tunnel junctions, we perform spectroscopy of superconducting NbSe2 flakes, of 2–25 monolayer thickness, measuring the quasiparticle density of states (DOS) as a function of applied in-plane magnetic field up to 33 T. In flakes ≲15 monolayers thick the DOS has a single superconducting gap. In these thin samples, the magnetic field acts primarily on the spin (vs orbital) degree of freedom of the electrons, and superconductivity is further protected by the Ising field. The superconducting energy gap, extracted from our tunneling spectra, decreases as a function of the applied magnetic field. However, in bilayer NbSe2, close to the critical field (up to 30 T, much larger than the Pauli limit), superconductivity appears to be more robust than expected from Ising protection alone. Our data can be explained by the above-mentioned ESTPs.Peer reviewe
    corecore