170 research outputs found

    Testing neutrino spectra formation in collapsing stars with the diffuse supernova neutrino flux

    Full text link
    I address the question of what can be learned from the observation of the diffuse supernova neutrino flux in the precision phase, at next generation detectors of Megaton scale. An analytical study of the spectrum of the diffuse flux shows that, above realistic detection thresholds of 10 MeV or higher, the spectrum essentially reflects the exponential-times-polynomial structure of the original neutrino spectrum at the emission point. There is only a weak (tens of per cent) dependence on the power \beta describing the growth of the supernova rate with the redshift. Different original neutrino spectra correspond to large differences in the observed spectrum of events at a water Cerenkov detector: for typical supernova rates, the ratio of the numbers of events in the first and second energy bins (of 5 MeV width) varies in the interval 1.5 - 4.3 for pure water (energy threshold 18 MeV) and in the range 1 - 2.5 for water with Gadolinium (10 MeV threshold). In the first case discrimination would be difficult due to the large errors associated with background. With Gadolinium, instead, the reduction of the total error down to 10-20 % level would allow spectral sensitivity, with a dramatic improvement of precision with respect to the SN1987A data. Even in this latter case, for typical neutrino luminosity the dependence on \beta is below sensitivity, so that it can be safely neglected in data analysis.Comment: LaTeX, 10 pages, 5 figures; details added to fig. 5 and related text, minor modifications to the text, references added. Version in press in Phys.Rev.D

    Revealing local failed supernovae with neutrino telescopes

    Full text link
    We study the detectability of neutrino bursts from nearby direct black hole-forming collapses (failed supernovae) at Megaton detectors. Due to their high energetics, these bursts could be identified - by the time coincidence of N >= 2 or N >= 3 events within a ~ 1 s time window - from as far as ~ 4-5 Mpc away. This distance encloses several supernova-rich galaxies, so that failed supernova bursts could be detected at a rate of up to one per decade, comparable to the expected rate of the more common, but less energetic, neutron star-forming collapses. Thus, the detection of a failed supernova within the lifetime of a Mt detector is realistic. It might give the first evidence of direct black hole formation, with important implications on the physics of this phenomenon.Comment: LaTeX, 4 pages, 4 figures; minor changes to the text, results unchange

    Characterizing a supernova's Standing Accretion Shock Instability with neutrinos and gravitational waves

    Full text link
    We perform a novel multi-messenger analysis for the identification and parameter estimation of the Standing Accretion Shock Instability (SASI) in a core collapse supernova with neutrino and gravitational wave (GW) signals. In the neutrino channel, this method performs a likelihood ratio test for the presence of SASI in the frequency domain. For gravitational wave signals we process an event with a modified constrained likelihood method. Using simulated supernova signals, the properties of the Hyper-Kamiokande neutrino detector, and O3 LIGO Interferometric data, we produce the two-dimensional probability density function (PDF) of the SASI activity indicator and calculate the probability of detection PDP_\mathrm{D} as well as the false identification probability PFIP_\mathrm{FI}. We discuss the probability to establish the presence of the SASI as a function of the source distance in each observational channel, as well as jointly. Compared to a single-messenger approach, the joint analysis results in PDP_\mathrm{D} (at PFI=0.1P_\mathrm{FI}=0.1) of SASI activities that is larger by up to  40%\approx~40\% for a distance to the supernova of 5 kpc. We also discuss how accurately the frequency and duration of the SASI activity can be estimated in each channel separately. Our methodology is suitable for implementation in a realistic data analysis and a multi-messenger setting.Comment: 24 pages, 15 figures, accepted by PR

    Neutrino Coherent Scattering Rates at Direct Dark Matter Detectors

    Full text link
    Neutrino-induced recoil events may constitute a background to direct dark matter searches, particularly for those detectors that strive to reach the ton-scale and beyond. This paper discusses the expected neutrino-induced background spectrum due to several of the most important sources, including solar, atmospheric, and diffuse supernova neutrinos. The largest rate arises from 8^8B produced solar neutrinos, providing upwards of 103\sim 10^3 events per ton-year over all recoil energies for the heaviest nuclear targets. However the majority of these 8^8B events are expected to be below the recoil threshold of modern detectors. The remaining neutrino sources are found to constitute a background to the WIMP-induced recoil rate only if the WIMP-nucleon cross section is less than 101210^{-12} pb. Finally the sensitivity to diffuse supernova neutrino flux for non-electron neutrino flavors is discussed, and projected flux limits are compared with existing flux limits

    Neutrino flavor conversion in a neutrino background: single- versus multi-particle description

    Full text link
    In the early Universe, or near a supernova core, neutrino flavor evolution may be affected by coherent neutrino-neutrino scattering. We develop a microscopic picture of this phenomenon. We show that coherent scattering does not lead to the formation of entangled states in the neutrino ensemble and therefore the evolution of the system can always be described by a set of one-particle equations. We also show that the previously accepted formalism overcounts the neutrino interaction energy; the correct one-particle evolution equations for both active-active and active-sterile oscillations contain additional terms. These additional terms modify the index of refraction of the neutrino medium, but have no effect on oscillation physics.Comment: 12 pages, 3 figures, minor typos correcte

    Probing the neutrino mass hierarchy and the 13-mixing with supernovae

    Get PDF
    We consider in details the effects of the 13-mixing (sin^2 theta_{13}) and of the type of mass hierarchy/ordering (sign[ Delta m^2_{13}]) on neutrino signals from the gravitational collapses of stars. The observables (characteristics of the energy spectra of nu_e and antinu_e events) sensitive to sin^2 theta_{13} and sign[Delta m^2_{13}] have been calculated. They include the ratio of average energies of the spectra, r_E = /, the ratio of widths of the energy distributions, r_Gamma, the ratios of total numbers of nu_e and antinu_e events at low energies, S, and in the high energy tails, R_{tail}. We construct and analyze scatter plots which show the predictions for the observables for different intervals of sin^2 theta_{13} and signs of Delta m^2_{13}, taking into account uncertainties in the original neutrino spectra, the star density profile, etc.. Regions in the space of observables r_E, r_Gamma, S, R_{tail} exist in which certain mass hierarchy and intervals of sin^2 theta_{13} can be identified or discriminated. We elaborate on the method of the high energy tails in the spectra of events. The conditions are formulated for which sin^2 theta_{13} can be (i) measured, (ii) restricted from below, (iii) restricted from above. We comment on the possibility to determine sin^2 theta_{13} using the time dependence of the signals due to the propagation of the shock wave through the resonance layers of the star. We show that the appearance of the delayed Earth matter effect in one of the channels (nu_e or antinu_e) in combination with the undelayed effect in the other channel will allow to identify the shock wave appeareance and determine the mass hierarchy.Comment: LaTeX, 56 pages, 12 figures; a few clarifications added; typos corrected. Version to appear in JCA

    Supernova pointing with low- and high-energy neutrino detectors

    Full text link
    A future galactic SN can be located several hours before the optical explosion through the MeV-neutrino burst, exploiting the directionality of ν\nu-ee-scattering in a water Cherenkov detector such as Super-Kamiokande. We study the statistical efficiency of different methods for extracting the SN direction and identify a simple approach that is nearly optimal, yet independent of the exact SN neutrino spectra. We use this method to quantify the increase in the pointing accuracy by the addition of gadolinium to water, which tags neutrons from the inverse beta decay background. We also study the dependence of the pointing accuracy on neutrino mixing scenarios and initial spectra. We find that in the ``worst case'' scenario the pointing accuracy is 88^\circ at 95% C.L. in the absence of tagging, which improves to 33^\circ with a tagging efficiency of 95%. At a megaton detector, this accuracy can be as good as 0.60.6^\circ. A TeV-neutrino burst is also expected to be emitted contemporaneously with the SN optical explosion, which may locate the SN to within a few tenths of a degree at a future km2^2 high-energy neutrino telescope. If the SN is not seen in the electromagnetic spectrum, locating it in the sky through neutrinos is crucial for identifying the Earth matter effects on SN neutrino oscillations.Comment: 13 pages, 7 figures, Revtex4 format. The final version to be published in Phys. Rev. D. A few points in the original text are clarifie

    Supernova 1987A did not test the neutrino mass hierarchy

    Get PDF
    We dispel the misconception that data from SN 1987A favor the normal neutrino mass hierarchy over the inverted hierarchy for \sin^2 \theta_{13} \gsim 10^{-4}. We find comparable fits for the two hierarchies. No bound can be placed on the mixing angle θ13\theta_{13} even at the 1σ\sigma level.Comment: 15 pages, 9 figure

    Supernova neutrino oscillations: A simple analytical approach

    Get PDF
    Analyses of observable supernova neutrino oscillation effects require the calculation of the electron (anti)neutrino survival probability P_ee along a given supernova matter density profile. We propose a simple analytical prescription for P_ee, based on a double-exponential form for the crossing probability and on the concept of maximum violation of adiabaticity. In the case of two-flavor transitions, the prescription is shown to reproduce accurately, in the whole neutrino oscillation parameter space, the results of exact numerical calculations for generic (realistic or power-law) profiles. The analytical approach is then generalized to cover three-flavor transitions with (direct or inverse) mass spectrum hierarchy, and to incorporate Earth matter effects. Compact analytical expressions, explicitly showing the symmetry properties of P_ee, are provided for practical calculations.Comment: 22 pages (RevTeX) + 5 figures (PostScript
    corecore