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Abstract—In this study, we test the feasibility of the synergy-
based approach for application in the realistic and clinically
oriented framework of multi-degree of freedom (DOF) robotic
control. We developed and tested online ten able-bodied sub-
jects in a semi-supervised method to achieve simultaneous,
continuous control of two DOFs of a robotic arm, using muscle
synergies extracted from upper limb muscles while performing
flexion-extension movements of the elbow and shoulder joints in
the horizontal plane. To validate the efficacy of the synergy-based
approach in extracting reliable control signals, compared to the
simple muscle-pair method typically used in commercial applica-
tions, we evaluated the repeatability of the algorithm over days,
the effect of the arm dynamics on the control performance, and the
robustness of the control scheme to the presence of co-contraction
between pairs of antagonist muscles. Results showed that, without
the need for a daily calibration, all subjects were able to intuitively
and easily control the synergy-based myoelectric interface in
different scenarios, using both dynamic and isometric muscle
contractions. The proposed control scheme was shown to be robust
to co-contraction between antagonist muscles, providing better
performance compared to the traditional muscle-pair approach.
The current study is a first step toward user-friendly application
of synergy-based myocontrol of assistive robotic devices.

Index Terms—Assistive robotics, muscle synergies, myoelectric
control, myoelectric signal processing.

I. INTRODUCTION

A MYOELECTRIC control system is one in which opera-
tion of the output apparatus is controlled by the surface

electromyogram (EMG) recorded during the contraction of one
or more muscles [1]. The main advantage of myoelectric control
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is due to the ability of the EMG signal to noninvasively convey
information about the human motor intent [2].
In recent decades, intensive effort has been devoted to

the development of intuitive control schemes able to pro-
vide user-friendly controllers. Starting from the early 1960s,
a number of studies addressed this challenge using pattern
recognition techniques. This approach decodes muscle activity
into intuitive outputs by training a model on a dataset that
associates EMG signals with desired motor outputs [3], [4].
These algorithms showed high classification accuracy of joint
kinematics in offline performance [5]. However, EMG signals
are classified in a limited number of patterns, thus obtaining a
discrete approximation of the continuous parameter space. As a
consequence, the controller is sequential, since only one pattern
at a time can be selected. In addition, proportional control is
challenging to achieve, since proportionality in the commands
undermines the classification accuracy [6]. Therefore, the un-
natural discrete non-proportional control scheme achieved by
the pattern classification approach results in the lack of a suc-
cessful clinical application of this technique. Nowadays, robust
continuous proportional and simultaneous myoelectric control,
in which multiple degrees of freedom (DOFs) can be controlled
at the same time via EMG inputs, is a necessary requirement
for commercial applications in robotic control, prostheses, and
orthoses [7]–[10]. A simple control strategy is represented by
two independent muscles controlling each single DOF [1], [11].
Due to its simplicity, this approach is generally adopted by
available prostheses today [12], [13]. However, these systems
are inherently limited since this strategy neglects information
from multiple muscles acting on each DOF and simultaneous
control of different DOFs can be achieved only if each muscle
is involved in the activation of only one DOF (i.e., mono-ar-
ticular muscles). In addition, as a consequence of recording
activity from only a pair of independent muscles for each DOF,
this approach is less robust to the noise that may affect the
stochastic EMG signal [14]. To overcome the above-mentioned
limits, some studies proposed myoelectric controllers based on
regression methods [15], [16] which provide estimation of joint
kinematics or kinetics, based on the subject's multi-site muscle
activity. In this framework, some studies [17], [18] tested an
approach based on the synergy model, a motor control model
which assumes that low-dimensional and high-level neural
commands are translated into high-dimensional and low-level
patterns of muscle activity [19], [20]. Regardless of their physi-
ological origin, time-invariant muscle synergies, extracted from
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multiple EMG channels while performing a number of different
tasks, represent underlying muscle coordination principles [21],
[22], making it possible to describe a variety of EMG patterns
as a combination of these fixed muscle synergies. Berger and
colleagues [18] tested a synergy-to-force mapping to validate
muscle synergies as a neural control strategy in cursor control
tasks. However, the robustness of control strategies based on
regression methods strongly depends on the training dataset,
which should be representative of a wide set of possible move-
ments. To do so, the algorithm may require a long and intensive
training phase, which, in addition, may not be possible in
certain groups of patients, since it requires the availability of
both EMG and kinematic signals.
A solution to the supervision problem has been proposed in

recent studies that used the synergy model to achieve contin-
uous proportional and simultaneous control of multiple DOFs
without the need for a time-demanding training phase [23]–[25].
In particular, Jiang and colleagues [24] achieved simultaneous
continuous control of two DOFs with a semi-supervised ap-
proach that did not require a training session, but only a short
initial calibration with information about which DOF was ac-
tive. This piece of information was needed to associate each
single muscle synergy, extracted using a modified version of the
NonnegativeMatrix Factorization (NMF) algorithm (DOF-wise
NMF) [26], to the related DOF. The efficacy of this control
strategy has been shown in able-bodied subjects [27], as well
as in amputees [28], both during offline tests and online val-
idations involving two-dimensional cursor control on a com-
puter monitor. However, the efficacy of these control schemes
needs to expand from the traditional cursor control and demon-
strate robustness in more realistic applications, such as robotic
control [29]. Differences between a simple cursor control and
multi-DOF robot control includemechanical constraints and dy-
namics of the robotic device, and it is reasonable to expect such
differences to influence the controller performance.
For the first time, this study tests the synergy-based approach

in the more realistic and clinically oriented framework of
multi-DOF robotic control. To do so, we developed and tested
online, on ten able-bodied subjects, a semi-supervised method
to achieve simultaneous, continuous control of two DOFs of a
robotic arm that reproduces the user's movement (or intention
of movement), using muscle synergies extracted from upper
limb muscles while performing flexion-extension movements
of the elbow and shoulder joints in the horizontal plane. To test
the effect of the dynamics of arm on the control scheme, robotic
myocontrol was achieved using EMG signals recorded during
both isometric contractions and unconstrained movements
executed at different speeds. The experiments were run over
multiple days to evaluate the repeatability of the synergy-based
algorithm. Our goal, here, was to validate the feasibility and the
efficacy of the synergy-based approach for multi-DOF robotic
control compared to the simple muscle-pair method typically
used in commercial applications. The current study is a first
step toward application of synergy-based myocontrol as control
strategy for functional or rehabilitative robotic devices.

II. METHODS

The study consisted of two protocols. For the first protocol
(Dynamic Protocol), muscle synergies and control signals

Fig. 1. Experimental setup. A polygraph is used to record, with a sampling
frequency of 2048 Hz, the EMG activity from eight upper-limb muscles. The
real-time EMG signals are passed to a Desktop PC, where a dedicated software
high-pass filters the data before sending them to the C++ control algorithm. The
C++ controller processes the data to generate the torque commands actuating the
robot's DOFs, with a frequency of 1000 Hz, in order to reproduce the ongoing
subject's motion (or intention of motion). Panel a: Dynamic Protocol. The poly-
graph records the subject's flexion-extension angles elbow and shoulder joints
by means of two electrogoniometers. The controller reads the subjects' and the
robot's angles, which are stored for postprocessing analyses. Panel b: Isometric
Protocol. The controller reads the 2-D position of the robot's end-effector and
displays it on a computer screen. In this figure, for clarity purposes, the robot is
placed on the table to show the entire apparatus. During the experiments, how-
ever, the robot was placed on a side lower table, so that the user could not see
the robot's movement.

were computed from EMG activity of upper-limb muscles
recorded during unconstrained flexion-extension movements
of the elbow (DOF 1) and the shoulder (DOF 2) joints in the
horizontal plane. In the second protocol (Isometric Protocol),
muscle synergies and control signals were extracted from iso-
metric contractions mimicking flexion-extension movements
of the two joints in the horizontal plane. The reason to test
the Isometric Protocol was that isometric force may be useful
for those patients whose irregularities of muscle activity are
exacerbated by the dynamics of limb control, as for patients
with disorders of the control of muscles.

A. Subjects
Eight healthy subjects (24 to 33 years old) participated in the

study. None of the subjects participated in any myoelectric con-
trol study prior to the current experiment. All subjects read and
signed informed consent. The study was performed in accor-
dance with the Declaration of Helsinki.

B. Experimental Setup
The experimental setup is shown in Fig. 1. Surface EMG

signals were acquired using a commercial 32-channel poly-
graph (PortiTM, Twente Medical System International, The
Netherlands) at a sampling rate of 2048 Hz. Surface electrodes
were placed in bipolar configuration, with an inter-electrode
distance of 10 mm, on the belly of eight upper-limb muscles
that are known to contribute to elbow and shoulder movements:
Brachioradialis (BRACH), Anconeus (ANC), Biceps Brachii
(BIC), Triceps Brachii (TRIC), Anterior Deltoid (AD), Lateral
Deltoid (LD), Posterior Deltoid (PD), and Supraspinatus (SS).
Prior to electrode placement, the skin over the muscles and
the surface of the sensors were wiped with isopropyl alcohol
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pads to reduce electrical impedance at the skin electrode inter-
face. The target muscles were mostly found by palpation and
anatomical landmarks. EMG signals, high-pass filtered at 5
Hz, were passed, through a virtual port, to a custom C++ pro-
gram. Nonlinear envelopes of the EMG signals were extracted
by applying a nonlinear recursive filter based on Bayesian
estimation which produces a smooth output that estimates the
driving force underlying the EMG signal with low latency [30],
thus guaranteeing online control. In addition, previous studies
[29] showed that the use of the nonlinear Bayesian filtering in
myoelectric control applications led to more accurate control
performance, compared to the use of the traditional linear
envelope. The algorithm computed online the torque signals to
drive two DOFs of a robotic arm, the Phantom® Premium 1.0
(SensAble™), which is a 3-DOF haptic device. For the purpose
of our study, we fixed the first DOF, while the second and the
third DOFs of the robot were arranged to mimic flexion-ex-
tension movements in the horizontal plane of the shoulder
(DOF 2) and the elbow (DOF 1) joints, respectively. The
robot's encoders of the two DOFs and the robot's end-effector
were recorded with a frequency of 1000 Hz. In the Dynamic
Protocol (Fig. 1, panel a), two electrogoniometers (Goniometer
Biometrics SG150, 1D, flexible part 115–170 mm, Biometrics
Ltd, U.K.), placed on the shoulder and the elbow respectively,
were connected to the polygraph to record the subject's joint
angles. For the Isometric Protocol (Fig. 1, panel b), a computer
screen was positioned in front of the subject, displaying three
circular targets and a cursor that tracked online the 2-D position
of the robot's end-effector. The diameter of each target was 35
density-independent units (pt), while the entire screen was 505
400 pt.

C. Experimental Protocols
During the experiment, the subject was seated at a table

with the dominant arm placed on it. The height of the chair
was adjusted so that the weight of the arm and the forearm
was supported to avoid any anti-gravitary muscle activity
(Fig. 1). During the Dynamic Protocol, friction-reducing sheets
were placed between the subject's limb and the table surface.
During the Isometric Protocol, heavy weights were placed
along both sides of the arm and the forearm to avoid flexion-ex-
tension movements, thus ensuring isometric contractions.
Both protocols consisted of three phases. The first step was
a calibration phase, aimed at recording data to extract offline
subject-specific muscle synergies. The calibration was followed
by a synergy-based control phase, during which the subject
achieved online simultaneous control of the robot's DOFs. A
third control phase was designed to implement the traditional
muscle-pair approach. Each protocol was executed over two
days (Day 1 and Day 2): the calibration phase took place only
on Day 1, while online control was repeated on Day 1 and Day
2, using the synergies extracted from the calibration phase data
of Day 1. The details of the two protocols and their respective
phases are presented as follows.
1) Dynamic Protocol—Calibration Phase:
The subject was instructed to perform a predefined sequence

of single-DOF movements (Fig. 2). For the elbow (DOF 1), a
sequence of three flexion/extension movements (from 60 to

160 , and back) was executed with the shoulder fixed at 90 ,
135 , and 180 . Single-DOF movements for the shoulder (DOF
2) were performed in a similar way: three flexion/extension
movements (from 180 to 90 and back) were performed with
the elbow fixed at 60 , 105 , and 160 . The EMG signals ac-
quired during this phase were recorded and factorized by ap-
plying a DOF-wise NMF to extract the muscle synergy matrix
used for the online control phase, as reported in Section II-D.
Online Synergy-Based Control Phase: In this phase

(Fig. 2), the subject was instructed to perform simultaneous
flexion-extension movements of the two DOFs. Each partici-
pant achieved two types of double-DOFs movements: in the
first type, DOF 1 and DOF 2 were first extended and then flexed
simultaneously; in the second type, the two DOFs were articu-
lated in opposite directions (i.e., when DOF 1 was flexed, DOF
2 was extended, and vice versa). Each participant performed
two sequences per each type, one slower and one faster, for a
grand total of four sequences. During online control, to prevent
corrective movements to alter the natural flow of the ongoing
motion, the user was not allowed to look at the robot.

Offline Muscle-Pair Control Phase: To assess the effec-
tiveness of our approach compared with the traditional muscle-
pair method, we performed offline simulations of robot control
based on the muscle-pair approach using the same EMG activity
recorded during the online synergy-based control phase. Addi-
tional details are presented in Section II-E.
2) Isometric Protocol—Calibration Phase:
The subject was instructed to perform predefined sequences

of isometric contractions of the two DOFs separately, mim-
icking the sequences of movements executed during the calibra-
tion phase of the Dynamic Protocol. The subject was encour-
aged to perform isometric contractions of one DOF at a time,
trying not to involve the other DOF. For DOF 1, the elbow was
positioned at 105 of flexion and the shoulder at 90 , 135 , and
180 . For each configuration of the shoulder, the subject was in-
structed to perform three series of isometric contractions, mim-
icking flexion-extension movements. In a similar way, for DOF
2, the subject was asked to perform three series of flexion-exten-
sion movements of the shoulder, fixed at 105 of flexion, with
the elbow at 90 , 135 , and 180 (Fig. 2). The EMG signals
acquired during this phase were recorded and factorized by ap-
plying a DOF-wise NMF to extract the matrix.

Online Synergy-Based Control Phase: In this phase, the
participant was seated in front of a monitor displaying three
targets and a cursor that tracked online the 2-D position of the
robot's end-effector. The three targets were placed at predefined
angular positions of the two DOFs. In particular, Target 1 was
hit by the robot's end-effector when DOF 1 and DOF 2 were
completely extended. Target 2 required DOF 1 to be completely
flexed and DOF 2 to be half-way extended. Finally, to hit Target
3, the robot's DOF 1 and DOF 2 had to be halfway extended and
halfway flexed, respectively. The subject was instructed to reach
each target as fast as possible and to pause with the cursor within
the target for at least 2 seconds (threshold time), for the target
to be considered hit. The task was accomplished when the sub-
ject reached all three targets, regardless from the order, within
a 45 seconds time interval. Otherwise, the task was treated as a
failure. Each subject performed three trials.
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Fig. 2. Experimental protocol. Figure shows the sequences of movements and isometric contractions performed by each subject, together with the envelopes of
the recorded EMG activity [Brachioradialis (BRACH), Anconeus (ANC), Biceps Brachii (BIC), Triceps Brachii (TRIC), Anterior Deltoid (AD), Lateral Deltoid
(LD), Posterior Deltoid (PD), and Supraspinatus (SS)]. Calibration phase (upper panel) and Control phase (lower panel) are presented for both the Dynamic (left
panel) and the Isometric (right panel) Protocols.

Online Muscle-Pair Control Phase: The task was identical
to the one described for the synergy-based isometric control,
with the only difference being that the robot's DOFs were driven
using the muscle-pair approach (see Section II-E for details). As
for the synergy approach, each subject repeated the experiment
three times.
The order of the two online control phases in the Isometric

Protocol was randomized for each subject to avoid any effect
of learning in the performance. The subject was blind to which
algorithm was used. Before recording, the user was given a
training period of three trials.

D. Offline Calibration Data Analysis

Offline calibration data analysis was executed with Matlab
R2011b (Mathworks, Natick, MA USA).
The EMG signals acquired during the calibration phases were

recorded and factorized by applying a DOF-wise NMF to ex-
tract the subject-specific muscle synergy matrix (Fig. 3). The
muscle synergy model [31] assumes that movements are exe-
cuted by translating low dimensional task-level commands into
higher dimensional muscle activation patterns [19]. Based on
this theory, matrix factorization algorithms, such as NMF, are
commonly used to estimate -dimensional neural activation
signals ( ) from -dimensional muscle signals ( ), with

. In particular, the activation of the th muscle, , can
be modeled as

(1)

where is the gain by which the th activation coefficient,
, is transferred to the th muscle. In matrix form, (1) can be

written as

(2)

where each column of the synergy matrix represents a muscle
synergy. A modified version of the NMF has been proposed
for the application of myoelectric control [22]. This DOF-wise
NMF models each DOF as driven by two activation signals,
one for each direction of articulation of the DOF. Therefore, by
applying the NMF algorithm to the single-DOF EMG signals
recorded during the calibration phase, it is possible to extract
two synergies for each DOF separately and to associate each
synergy to Positive (“E”) or Negative (“F”) directions of that
specific DOF. By applying the DOF-wise algorithm to DOF 1
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Fig. 3. Analyses. Upper panel: Offline Calibration Data Analysis. Subject's EMG signals recorded during the Calibration Phase are factorized to extract the
muscle synergy matrix and the multiplicative factors used for the online control phase. Middle panel: Online Control
Analysis. Synergy-based approach: at each time instant, four activation coefficients are estimated online, given the subject's EMGs and , by
solving a nonnegative least squares problem. The activation coefficients are combined to produce the torque commands sent to the robot's actuators. Muscle-pair
approach: the activity of the four muscles most involved in each of the two directions of articulation of the 2 DOFs is used to produce the torque
commands sent to the robot's actuators. Lower panel: Offline Performance Analysis. Dynamic Protocol: the control performance is assessed by computing Root-
mean-square Error (RMSE) and Pearson's Correlation coefficient ( ) between the subject's and the robot's joint angles. Isometric Protocol: the control performance
is assessed by computing three indices: Completion time ( ), average speed ( ), and Index of Performance (IP).

and DOF 2 EMG data separately, we obtained a four-column
subject-specific synergy matrix

(3)

The EMG signals acquired during the calibration phases were
also used to compute the multiplicative factors that were utilized
during the online phase to match the relative angular magnitude
of motion between the user and the robot (Fig. 3). In particular,
for the synergy-based approach, for each DOF separately, given
and the single-DOF EMG data, we computed, by solving a

nonnegative least squares constraint problem (Matlab function
‘lsqnonneg’) the four activation coefficients ( ). We then com-
puted as the difference between the two activation coeffi-
cients related to the DOF

(4)

We took the maximum ( ) and the minimum ( ) values of
(which corresponded tomaximal extension andmaximal flexion

of the th DOF, respectively), and we computed and
as

(5)

and (6)

where was known a priori as the torque that has to be
sent to the robot's single-DOF in order to move the DOF from
a neutral zero position to the maximal flexion or extension in
2 seconds. The multiplicative factor was then com-
puted as the mean between and . Likewise,
for the muscle-pair approach, for each DOF separately, given
the single-DOF EMG data, we computed as the difference
between the two EMG signals that corresponded to the muscles
most involved in each of the two directions of articulation of the
th DOF ( and )

(7)
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In particular, BIC and TRIC were selected for DOF 1, while
AD and PD were used for DOF 2. We took the maximum ( )
and the minimum ( ) values of (which corresponded to max-
imal extension and maximal flexion of the th DOF, respec-
tively), and we computed and as

(8)

and (9)

As for the synergy-based approach, the multiplicative factor
was then computed as the mean between

and .

E. Control Analysis
1) Synergy-Based Control: As shown in Fig. 3, the EMG

signals acquired in this phase were used for online control of
the two DOFs of the robotic arm. In our protocol, we assumed
that a system consisting of two biomechanical DOFs (DOF 1
and DOF 2) was driven by four activation signals

(10)
Each time instant, given the online nonlinear envelopes

of the EMG signals ( ) and the subject-specific ma-
trix, the algorithm extracted, by solving a nonnegative least
squares constraint problem [32], the four activation signals

that were used for online simultaneous
torque-based control of the two DOFs of the robotic arm. In
particular, our approach modeled the th DOF as driven by the
difference between the two activation signals related to the
DOF, scaled by the multiplicative factor

(11)

2) Muscle-Pair Control: As shown in Fig. 3, for each time in-
stant, each DOF of the robotic arm was driven by the difference
between the two EMG signals that corresponded to the muscles
most involved in each of the two directions of articulation of the
DOF ( and ), scaled by themultiplicative factor

(12)

In the Dynamic Protocol, muscle-pair control was an offline
simulation run using exactly the same EMG signals recorded
during the online synergy-based control phase. On the other
hand, since visual feedback was needed for the proper achieve-
ment of the Isometric Protocol, muscle-pair control was tested
online.

F. Performance Analysis and Statistics
Performance analysis was executed with Matlab R2011b

(Mathworks, Natick, MA USA). Statistical analysis was per-
formed using RStudio Version 0.98.981 (RStudio Inc., Boston,

MA, USA) and the R-package “lme4” Version 1.1-7 [33]. For
the statistics, the significance level was set at 5%.
1) Dynamic Protocol: The subject's and the robot's angular

trajectories for DOF 1 and DOF 2 were normalized to their re-
spective ranges, to obtain signals ranging from 0 to 1. The per-
formance of the control algorithm was assessed by computing
root-mean-square error (RMSE) and Pearson's Correlation co-
efficient ( ) between the subject's and the robot's joint angles
(DOF 1 and DOF 2 separately; see Fig. 3). For this protocol,
the purpose of the statistical analysis was twofold. First, it is
to compare the synergy-based and the muscle-pair approach. In
the second place, the purpose is to test the robustness and the
repeatability of the synergies over days. For this reason, we ran
a three-way repeated measures ANOVA. For each dependent
variable (RMSE and ), the design included three independent
within-subject factors, each consisting of two levels (Approach:
“Synergy” and “Muscle Pair”; DOF: “DOF 1” and “DOF 2”;
Day: “Day 1” and “Day 2”). As a consequence of conveying in-
formation from a number of muscles, synergy-based myocon-
trol is expected to provide control that is more natural and more
robust to high co-contraction levels, compared to the traditional
muscle-pair approach. This feature is quite important when ad-
dressing pathological populations that present aberrant co-con-
tractions of antagonist muscles, as is the case for certain disor-
ders of the control of muscles. To validate our hypothesis, we
computed the levels of co-contraction between antagonist pairs
of muscles and we investigated a possible correlation with the
quality of the performance, in terms of error, for the two control
approaches separately. As proposed by Rudolph et al. [34], the
levels of co-contraction (CC) between BIC and TRIC and be-
tween AD and PD were computed as

number of frames
Lower
Higher

Lower Higher (13)

To study the overall correlation between CC and RMSE, we
applied a linear mixed effects analysis [35] (“lmer” function in
) because the design of our experiment had multiple measures

for each subject. Instead of averaging data for each subject,
which implies a loss of information, the use of a linear mixed ef-
fect model allowed us to resolve nonindependence by assuming
different random intercepts and random slopes for each subject.
In particular, for each of the two control approaches, we per-
formed a linear mixed effects analysis on RMSE. As fixed ef-
fects, we entered CC (CC of BIC and TRIC for RMSE values
obtained from DOF 1; CC of AD and PD for RMSE values ob-
tained from DOF 2) and, as random effects, we had intercepts
for subjects, as well as by-subject random slopes for the effect
of CC. In order to test if the fixed effect CC significantly af-
fected the dependent variable RMSE, we compared the model
including all the factors (Full) against a reduced model without
the effect of CC (Null). -values and Akaike's Information Cri-
terion values (AIC) were obtained by likelihood ratio tests of
the Full model with the Null model.
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2) Isometric Protocol: The performance of the Isometric
Protocol was assessed by computing three indices (Fig. 3).
Completion time ( ) was defined as the time it took the sub-
ject to accomplish a successful trial, that is the period between
the starting instant and the instant the subject reached the third
and last target, minus the resting intervals on each target. The
average speed ( ) of a successful trial was computed as the
ratio between the trajectory length and the time (time-to-target
) between two targets, averaged over all three targets. Finally,
we computed the Index of Performance (IP), which is defined
as the human rate of information processing for a specific
control task. In the speed-accuracy model of human movement
developed by Fitts [36], the IP for a task of a specified difficulty
(ID) is defined as

IP
ID

time to target
(14)

where time-to-target is the time to reach a target of a specified
width ( ) over a specified distance ( ). In this study, to mea-
sure the quality of myoelectric control, we use the IP derived
from the Shannon formulation of the Fitts' Law [37] extended
to 2-D tasks [38], conjecturing that different control approaches
will have different rates of information transfer. In particular, to
move from one target to another, ID was computed as

ID (15)

where is the diameter of the circular target, and is the an-
gular excursion between the two targets, summed over DOF 1
and DOF 2. To assess the validity of the speed-accuracy tradeoff
in the current study, we investigated the linear regression be-
tween time-to-target and ID. For each trial, we computed three
IP values (one for each target), for a grand total of 18 values
per subject (nine for the synergy-based control; nine for the
muscle-pair control). The IP value was set to 0 for those tar-
gets that were not hit.
Similarly to the Dynamic Protocol, we aimed at investigating

possible between-approach and between-day differences in
terms of performance. We ran a two-way repeated measures
ANOVA for the continuous dependent variables , , and
IP, computed for the successful trials. The design included
two independent within-subject factors, each consisting of two
levels (Approach: “Synergy” and “Muscle Pair”; Day: “Day 1”
and “Day 2”).
We investigated a possible correlation with the levels of

co-contraction of antagonist muscles and the quality of the
performance for the two control approaches in the Isometric
Protocol as well. We performed a linear mixed effect analysis
on IP. As fixed effects, we entered CC averaged over the two
pairs of muscles and, as random effects, we had intercepts for
subjects, as well as by-subject random slopes for the effect
of CC. To test if the fixed effect CC significantly affected IP,
we compared the Full and the reduced Null models through
likelihood ratio tests.

Fig. 4. Results for the Dynamic Protocol. The performances of the two con-
trol approaches (synergy-based (gray) and muscle-pair (black)) during dynamic
protocol are compared in terms of subject's and robot's angles: a) RMSE and
b) correlation coefficient. For each parameter and each control approach, the
bars reproduce the mean across subjects and across the 2 DOFs, and the relative
standard deviation.

III. RESULTS

Results are reported as mean and standard deviation values.

A. Dynamic Protocol

Three-way repeated measures ANOVA for RMSE between
the subject's and the robot's angles reported strong significant
effects for within-subject factors Approach ( ) and
DOF ( ), with significant interaction between the two
factors ( ). In particular, as shown in Fig. 4 panel a,
the synergy-based approach showed decreased RMSE values
compared to the muscle-pair method (Synergy: 0.248 0.058;
Muscle-pair: 0.330 0.105). The error between the subject's and
the robot's angle for DOF 2 was lower than the one for DOF
1 (DOF 1: 0.326 0.103; DOF 2: 0.253 0.067). The signifi-
cant interaction shows that the muscle-pair approach leads to
increased RMSE values especially for DOF 1. No significant
effect emerged for factor Day ( ).
Similar results were reported for the statistics on the linear

correlation coefficient r between subject's and robot's angles.
Indeed, the statistics reported significant effect for factors Ap-
proach ( ) and DOF ( ), with no interaction,
while no significance was found for factor Day ( ).
The subject's and robot's joint angles showed higher correlation
for the synergy-based approach, compared to the muscle-pair
approach (Synergy: 0.812 0.107; Muscle-pair: 0.686 0.196)
(Fig. 4 panel b), and for DOF 2 in comparison with DOF 1 (DOF
1: 0.663 0.192; DOF 2: 0.835 0.077).
The lowest angular speed of performance, averaged over all

subjects, was 0.439 ( 0.119) rad/s and 0.468 ( 0.065) rad/s
for DOF 1 and DOF 2, respectively. The highest was 1.428
( 0.528) rad/s and 0.958 ( 0.238) rad/s for DOF 1 and DOF 2,
respectively.
As shown in Fig. 5, a significant effect of CC on RMSE was

reported for the muscle-pair approach [ ;
; ], with RMSE increasing

with CC [Slope for the fixed effect ], while no effect
of CC on RMSE emerged for the synergy-based approach
[ ; ; ;
Slope for the fixed effect ].

B. Isometric Protocol

During the execution of the Isometric Protocol, significant
linear regression between time-to-trial and ID was found
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Fig. 5. Correlation between RMSE and co-contraction for the Dynamic Pro-
tocol. Panel a: Linear regression between RMSE and co-contraction (CC) for
the synergy-based (white triangles) and the muscle-pair approach black circles),
computed over all trials of all subjects. Statistics report a significant ( ) corre-
lation between RMSE and CC for the muscle-pair approach, while no signifi-
cance was found during the synergy-based control. Panel b: Each subplot repre-
sents the linear regression between RMSE and CC for each subject individually.
White triangles and black circles show data obtained with the synergy-based and
the muscle-pair approaches respectively.

( ). Since the speed-accuracy tradeoff has been widely
proposed as an objective measure for real-time performance
[39]–[41], this result validates the use of IP, derived from the
linear relationship between time and difficulty of the task, to
quantify the control performance in the current study.
Two-way ANOVA reported that was not significantly

affected by either Approach or Day ( and ,
respectively). Averaged over all participants, the time to accom-
plish a successful trial was s. Similarly, no sig-
nificant effect of Approach or Day ( and ,
respectively) was found for . The average speed over all sub-
jects was 15.160 3.687 cm s. Finally, no difference emerged
for IP between the two approaches ( ), or between the
two days ( ).
Including all subjects, a higher number of successful trials

was accomplished when using the synergy-based control inter-
face, compared to the muscle-pair controller (Synergy: accom-
plished: 47, failed: 1; Muscle-pair: accomplished: 39; failed: 9).
In addition, for the muscle-pair approach, a significant ef-

fect of CC on IP was reported [ ;
; ]. As shown in Fig. 6, IP decreases with in-

creasing CC [Slope for the fixed effect ]. On the other
hand, no effect of CC was found on IP for the synergy-based
approach [ ; ; ;
Slope for the fixed effect ]. This finding suggests that
the synergy-based controller may be less affected by abnormal
or nonfunctional co-contraction patterns, which characterize a
good spectrum of neuromotor disorders.

Fig. 6. Correlation between IP and co-contraction for the Isometric Protocol.
Panel a: Linear regression between Index of Performance (IP, measured in bit
per second [bps]) and co-contraction (CC) for the synergy-based (white trian-
gles) and the muscle-pair approach black circles), computed over all trials of
all subjects. Statistics report a significant ( ) correlation between IP and CC
for the muscle-pair approach, while no significance was found during the syn-
ergy-based control. Panel b: Each subplot represents the linear regressions be-
tween IP and CC for each subject individually. White triangles and black cir-
cles show data obtained with the synergy-based and the muscle-pair approaches
respectively.

IV. DISCUSSION

In this study, we tested a semi-supervised approach for
synergy-based, online, simultaneous myoelectric control of two
DOFs of a robotic arm. The control performance was evaluated
in two different conditions: in the first experiment (Dynamic
Protocol), the driving signals to control the robot were es-
timated from muscle activity recorded during the activation
of the two DOFs for their full range of motion; while in the
second experiment (Isometric Protocol), the subject controlled
the myoelectric interface with isometric muscle contractions of
the two DOFs.
For both experiments, we compared the performance of the

synergy-based approach, with the traditional control scheme
based on a pair of independent muscles. We found that, in the
Dynamic Protocol, synergy-based online control significantly
outperformed the traditional muscle-pair approach in terms of
decreased error and increased correlation between the subject's
and the robot's joint angles. In the Isometric Protocol, although
a higher number of successful trials was accomplished with the
synergy-based approach, the quality of the control achieved
with the two methods was similar in terms of completion time,
average speed, and index of performance. The lack of signif-
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icant differences in control quality between the two control
schemes may be due to the use of visual feedback during the
Isometric Protocol. Indeed, previous studies [24], [42] showed
that continuous visual feedback helps subjects to improve
online control performance by providing them with the chance
to remap the control signals in the proper space in case of
inaccuracy of the mapping achieved by the control algorithm.
It is therefore likely that the reduced control efficacy for the
muscle-pair approach during the Dynamic Protocol was com-
pensated by the availability of visual feedback in the Isometric
Protocol. However, since the Dynamic Protocol was not tested
in the presence of visual feedback, we are not able to assess
how exactly the presence of visual feedback affected the control
performance and future work will have to address this open
point. The absence of a substantial difference between the two
approaches in this second protocol may also be explained by the
use of isometric muscle contractions. Indeed, one of the disad-
vantages of the muscle-pair approach is that, since it records the
activity of only a pair of muscles, it is strongly affected if either
of the EMG channels is corrupted by noise. We know that the
noise components contaminating the EMG signal are enhanced
when the signal is obtained during dynamic contractions [43].
Thus, it is likely that myoelectric control mostly benefits from
the synergy-based approach, which conveys information from
multiple muscles, when the EMG signal is corrupted by a
high amount of noise, as for the case of dynamic contractions.
Similarly, we can speculate that a myoelectric control approach
based on muscle synergies would be particularly suitable when
the subject's muscle activity is corrupted by increased sources
of variability and co-contraction. Indeed, when extracting
synergies from multi-muscle EMG, factorization algorithms
such as NMF convert a set of incoming EMG signals into
distinguishable and repeatable descriptors, while discarding
irrelevant information. As a consequence, muscle synergies are
more robust to possible aberrant activity of a single muscle and
to abnormal co-contraction levels between pairs of antagonist
muscles. This hypothesis is supported by our findings. Indeed,
for both protocols, the myoelectric control performance of
the muscle-pair approach significantly correlated with the
co-contraction levels of antagonist muscles, while no correla-
tion between the quality of the synergy-based controller and
the co-contraction levels was reported, suggesting that the
performance of the synergy-based approach is more robust to
possible nonfunctional co-contraction patterns.
To test the robustness and repeatability of the algorithm, the

control performance was evaluated over two days, using the
same synergies extracted from the calibration phase on the first
day. For both protocols, our results did not report any difference
in the control performance between the two days, suggesting
that the algorithm was robust to electrode shifts caused by the
multiple day experiment, and that the subject-specific synergies
extracted from the data recorded during the calibration phase
were consistent over days. Although we used a semi-supervised
control scheme that only requires a short calibration phase, the
myoelectric algorithm was able to provide reliable controlla-
bility and online performance without the need for a daily cal-
ibration. This is a necessary achievement for clinical and com-
mercial applications.

With the Dynamic Protocol, we showed that the synergy-
based control scheme for use in robotic applications is able to
provide reliable control signals also when visual feedback is
withheld. This finding further validates what was reported by
Pistohl and colleagues [29] in the framework of simple cursor
control and extends it in the more realistic framework of robotic
control, thus supporting the potential of the synergy-based con-
trol scheme for successful use in clinical applications. In light of
the results reported for the Dynamic Protocol, we are confident
that this would also apply to the Isometric Protocol where, be-
cause of the design of the current experiment, visual feedback
was required to accomplish the task. However, further studies
will be needed to test the effect of visual feedback on the con-
trol performance of the synergy-based approach when isometric
muscle contractions are used.
Future work may also investigate the robustness of the pro-

posed control scheme to possible changes of inertia, for instance
by adding weights on the robotic arm
This study recruited naïve subjects who never participated in

myocontrol experiments prior to the current one. All of them
were able to intuitively and successfully interact with the syn-
ergy-based control interface, without the need for significant
training and practice.
To validate the different scenarios of the developed control

approach, and as a preliminary proof-of-concept, only healthy
able-bodied subjects were recruited for the current study. Fu-
ture work will be needed in order to validate the current algo-
rithm on a vast scenario of different populations, without re-
stricting the current control system to the amputee population,
which is typically addressed by research on myoelectric control
systems. Myocontrol studies on nonamputee patients are indeed
restricted to EMG-controlled robotic exoskeletons and powered
orthoses for robot-aided therapy in stroke patients [44], [45]. In
particular, to date, no work has focused on patients with severe
dyskinetic cerebral palsy (CP) who are unable to achieve ef-
fective voluntary movements. Due to early brain injury, these
patients are left with a combination of spasticity, dystonia, dys-
praxia, and other motor disorders [46]. Commonly available
prosthetic devices for patients with severe CP are limited to
basic control such as simple computer interfaces for assisted
communication or switches for control of an electric wheelchair.
Research aimed at developing intuitive and flexible control in-
terface strategies has the potential to provide these patients with
significantly improved mobility, manipulation, and functional
communication [47], [48]. One of the reasons for using myo-
electric control systems with these patients is that, in CP, there is
no disconnect between the brain and the spinal cord, so that the
EMG signal provides a direct read-out of the movement-related
activity in motor cortex. On the other hand, a major obstacle to
the use of myoelectric control in patients with CP and arm dys-
tonia is that the EMG signal is corrupted by co-contraction, vari-
ability, and increased signal-dependent noise [49]–[52]. Since
our findings show that the synergy-based myoelectric controller
is robust to the different sources of noise corrupting EMG sig-
nals, the proposed control strategy may be a promising tool par-
ticularly suitable to help patients with severe dyskinetic CP and
other neuromotor disorders that present abnormalities of muscle
activity gain functional manipulation, and mobility.
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V. CONCLUSION

To conclude, we successfully validated a semi-supervised
approach for synergy-based, online, simultaneous myoelectric
control of two DOFs of a robotic arm. All subjects were able
to intuitively and easily control the myoelectric interface in
different scenarios, using both dynamic and isometric muscle
contractions, and without the need for a daily calibration. The
proposed control scheme was shown to be robust to co-contrac-
tion between antagonist muscles, providing better performance
compared to the traditional muscle-pair approach. These prop-
erties make the synergy-based control scheme a promising
approach for user-friendly control of assistive robotic devices
for patients with movement disorders.
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