2,063 research outputs found
High power-high voltage waterload Patent
Variable water load for dissipating large amounts of electrical power during high voltage power supply test
The piezoresistive effect in electron irradiated silicon and its application to the improvement of semiconductor strain gages
Piezoresistive effect in electron irradiated silicon and application to improved semiconductor strain gage
Preliminary studies identifying and quantifying trace metal impurities in illicit ecstasy tablets using atomic spectrometry techniques
This paper illustrates some preliminary investigations into using ICP-MS in combination with ET-AAS in the analysis of Ecstasy tablets. Results indicate that a combination of both techniques can show discriminating power between seizures. Descriptions of the modifications made to optimise the ET-AAS system are described
Quantum Charged Spinning Particles in a Strong Magnetic Field (a Quantal Guiding Center Theory)
A quantal guiding center theory allowing to systematically study the
separation of the different time scale behaviours of a quantum charged spinning
particle moving in an external inhomogeneous magnetic filed is presented. A
suitable set of operators adapting to the canonical structure of the problem
and generalizing the kinematical momenta and guiding center operators of a
particle coupled to a homogenous magnetic filed is constructed. The Pauli
Hamiltonian rewrites in this way as a power series in the magnetic length making the problem amenable to a perturbative analysis. The
first two terms of the series are explicitly constructed. The effective
adiabatic dynamics turns to be in coupling with a gauge filed and a scalar
potential. The mechanism producing such magnetic-induced geometric-magnetism is
investigated in some detail.Comment: LaTeX (epsfig macros), 27 pages, 2 figures include
Spectrometric study of condensed phase species of thorium and palladium-based modifiers in a complex matrix for electrothermal atomic absorption spectrometry
The chemical and morphological transformations of condensed phase species of a thorium-based modifier were studied over the temperature range 200–2500 °C, without and with the presence of aluminium and silicon as matrix components, and in some instances, arsenic as an analyte element. A similar study was also conducted with palladium as the modifier, for comparison. Results were derived using scanning electron microscopy (SEM), energy dispersive (ED) X-ray spectrometry, Raman microanalysis and attenuated total reflectance (ATR) Fourier transform-infrared (FT-IR) spectrometry. Comparable results were found using pyrolytic and non-pyrolytic graphite platforms, with processes occurring at slightly higher temperatures on the pyrolytic graphite platform. With thorium as the modifier, metal oxides were the predominant species on the platform surface at relatively low temperatures (<1500 °C), whereas metal phases became prevalent at high temperatures, when thorium and aluminium tended to behave independently from one other. Some spatial variations in the composition of the salt residues on different regions of the platform were observed (from the region closest to the slot in the tube, to the region furthest from the slot). Nonetheless, thorium metal remained on the graphite platform to higher temperatures than did aluminium metal. In the presence of arsenic, the existence of mixtures of thorium and arsenic oxides, just before the appearance temperature of gas phase arsenic atoms, was confirmed by SEM studies, ED X-ray spectra and Raman microanalysis. This suggests that any modifying effect of thorium on arsenic occurs while the modifier is in the oxide phase rather than in the metal phase. The presence of silicon added as silica, did not influence significantly the thermochemical behaviour of mixtures of thorium and aluminium. However, coexistence of silicon and arsenic oxides at the appearance temperature of the atomic absorption signal of arsenic was obtained, confirming that silicon can act as an internal modifier for arsenic. In the presence of palladium, aluminium exhibited greater interaction with the modifier; consequently, aluminium metal was retained on the platform surface to higher temperatures than thorium, which could explain how interference effects of aluminium on e.g. arsenic are avoided or reduced. Similarly, there was evidence for interaction of palladium and arsenic in the reduced state. However, when aluminium and silicon were present, the transformation of the palladium oxide to the metallic state was affected, which could diminish the modifying benefits of palladium for arsenic in the presence of aluminium
Ray helicity: a geometric invariant for multi-dimensional resonant wave conversion
For a multicomponent wave field propagating into a multidimensional
conversion region, the rays are shown to be helical, in general. For a
ray-based quantity to have a fundamental physical meaning it must be invariant
under two groups of transformations: congruence transformations (which shuffle
components of the multi-component wave field) and canonical transformations
(which act on the ray phase space). It is shown that for conversion between two
waves there is a new invariant not previously discussed: the intrinsic helicity
of the ray
Adiabatic Motion of a Quantum Particle in a Two-Dimensional Magnetic Field
The adiabatic motion of a charged, spinning, quantum particle in a two -
dimensional magnetic field is studied. A suitable set of operators generalizing
the cinematical momenta and the guiding center operators of a particle moving
in a homogeneous magnetic field is constructed. This allows us to separate the
two degrees of freedom of the system into a {\sl fast} and a {\sl slow} one, in
the classical limit, the rapid rotation of the particle around the guiding
center and the slow guiding center drift. In terms of these operators the
Hamiltonian of the system rewrites as a power series in the magnetic length
\lb=\sqrt{\hbar c\over eB} and the fast and slow dynamics separates. The
effective guiding center Hamiltonian is obtained to the second order in the
adiabatic parameter \lb and reproduces correctly the classical limit.Comment: 17 pages, LaTe
Diagonalization of multicomponent wave equations with a Born-Oppenheimer example
A general method to decouple multicomponent linear wave equations is presented. First, the Weyl calculus is used to transform operator relations into relations between c-number valued matrices. Then it is shown that the symbol representing the wave operator can be diagonalized systematically up to arbitrary order in an appropriate expansion parameter. After transforming the symbols back to operators, the original problem is reduced to solving a set of linear uncoupled scalar wave equations. The procedure is exemplified for a particle with a Born-Oppenheimer-type Hamiltonian valid through second order in h. The resulting effective scalar Hamiltonians are seen to contain an additional velocity-dependent potential. This contribution has not been reported in recent studies investigating the adiabatic motion of a neutral particle moving in an inhomogeneous magnetic field. Finally, the relation of the general method to standard quantum-mechanical perturbation theory is discussed
Product rule for gauge invariant Weyl symbols and its application to the semiclassical description of guiding center motion
We derive a product rule for gauge invariant Weyl symbols which provides a
generalization of the well-known Moyal formula to the case of non-vanishing
electromagnetic fields. Applying our result to the guiding center problem we
expand the guiding center Hamiltonian into an asymptotic power series with
respect to both Planck's constant and an adiabaticity parameter already
present in the classical theory. This expansion is used to determine the
influence of quantum mechanical effects on guiding center motion.Comment: 24 pages, RevTeX, no figures; shortened version will be published in
J.Phys.
Boundary Conditions on Internal Three-Body Wave Functions
For a three-body system, a quantum wave function with definite
and quantum numbers may be expressed in terms of an internal wave
function which is a function of three internal coordinates. This
article provides necessary and sufficient constraints on to
ensure that the external wave function is analytic. These
constraints effectively amount to boundary conditions on and its
derivatives at the boundary of the internal space. Such conditions find
similarities in the (planar) two-body problem where the wave function (to
lowest order) has the form at the origin. We expect the boundary
conditions to prove useful for constructing singularity free three-body basis
sets for the case of nonvanishing angular momentum.Comment: 41 pages, submitted to Phys. Rev.
- …
