6,714 research outputs found
Recommended from our members
1952 Steel Seizure Revisited - Systematic Study In Presidential Decision-Making
Managemen
Unsupervised machine learning for detection of phase transitions in off-lattice systems II. Applications
We outline how principal component analysis (PCA) can be applied to particle
configuration data to detect a variety of phase transitions in off-lattice
systems, both in and out of equilibrium. Specifically, we discuss its
application to study 1) the nonequilibrium random organization (RandOrg) model
that exhibits a phase transition from quiescent to steady-state behavior as a
function of density, 2) orientationally and positionally driven equilibrium
phase transitions for hard ellipses, and 3) compositionally driven demixing
transitions in the non-additive binary Widom-Rowlinson mixture
PRESENCE AND PREVALENCE OF BD (BATRACHOCHYTRIUM DENDROBATIDIS) IN CENTRAL PENNSYLVANIAN WOODLAND VERNAL POOLS
Batrachochytrium dendrobatidis (Bd), a virulent chytrid fungus responsible for dramatic amphibian declines, has been detected in the northwestern and southeastern regions of Pennsylvania. However, little environmental Bd testing has been performed in central Pennsylvania, particularly in the unique and speciose habitats of woodland vernal pools. Our study included sampling in four vernal pools over a period of three months during amphibian breeding periods. Skin swabs were taken from three caudate and two anuran species, during the course of late winter and spring migrations (n = 143). Low Bd zoospore equivalent loads were detected in only a few individuals, in three of the five species but in all four vernal pools sampled. No significant trends were seen between zoospore loads and ambient temperature or migration timing across the species sampled
Mechanism of the photovoltaic effects in 2-4 compounds Progress report, 1 Apr. - 30 Sep. 1968
Current gain mechanism in copper sulfide-cadmium sulfide diode upon photoexcitation in presence of reverse bia
Heat shock factor 1 regulates lifespan as distinct from disease onset in prion disease
Prion diseases are fatal, transmissible, neurodegenerative diseases caused by the misfolding of the prion protein (PrP). At present, the molecular pathways underlying prion-mediated neurotoxicity are largely unknown. We hypothesized that the transcriptional regulator of the stress response, heat shock factor 1 (HSF1), would play an important role in prion disease. Uninoculated HSF1 knockout (KO) mice used in our study do not show signs of neurodegeneration as assessed by survival, motor performance, or histopathology. When inoculated with Rocky Mountain Laboratory (RML) prions HSF1 KO mice had a dramatically shortened lifespan, succumbing to disease ≈20% faster than controls. Surprisingly, both the onset of home-cage behavioral symptoms and pathological alterations occurred at a similar time in HSF1 KO and control mice. The accumulation of proteinase K (PK)-resistant PrP also occurred with similar kinetics and prion infectivity accrued at an equal or slower rate. Thus, HSF1 provides an important protective function that is specifically manifest after the onset of behavioral symptoms of prion disease
The binary black-hole problem at the third post-Newtonian approximation in the orbital motion: Static part
Post-Newtonian expansions of the Brill-Lindquist and Misner-Lindquist
solutions of the time-symmetric two-black-hole initial value problem are
derived. The static Hamiltonians related to the expanded solutions, after
identifying the bare masses in both solutions, are found to differ from each
other at the third post-Newtonian approximation. By shifting the position
variables of the black holes the post-Newtonian expansions of the three metrics
can be made to coincide up to the fifth post-Newtonian order resulting in
identical static Hamiltonians up the third post-Newtonian approximation. The
calculations shed light on previously performed binary point-mass calculations
at the third post-Newtonian approximation.Comment: LaTeX, 9 pages, to be submitted to Physical Review
On bare masses in time-symmetric initial-value solutions for two black holes
The Brill-Lindquist time-symmetric initial-value solution for two uncharged
black holes is rederived using the Hamiltonian constraint equation with Dirac
delta distributions as a source for the binary black-hole field. The bare
masses of the Brill-Lindquist black holes are introduced in a way which is
applied, after straightforward modification, to the Misner-Linquist binary
black-hole solution.Comment: LaTeX, 4 page
Lattice Universes in 2+1-dimensional gravity
Lattice universes are spatially closed space-times of spherical topology in
the large, containing masses or black holes arranged in the symmetry of a
regular polygon or polytope. Exact solutions for such spacetimes are found in
2+1 dimensions for Einstein gravity with a non-positive cosmological constant.
By means of a mapping that preserves the essential nature of geodesics we
establish analogies between the flat and the negative curvature cases. This map
also allows treatment of point particles and black holes on a similar footing.Comment: 14 pages 7 figures, to appear in Festschrift for Vince Moncrief (CQG
Loading of a Rb magneto-optic trap from a getter source
We study the properties of a Rb magneto-optic trap loaded from a commercial
getter source which provides a large flux of atoms for the trap along with the
capability of rapid turn-off necessary for obtaining long trap lifetimes. We
have studied the trap loading at two different values of background pressure to
determine the cross-section for Rb--N collisions to be 3.5(4)x10^{-14} cm^2
and that for Rb--Rb collisions to be of order 3x10^{-13} cm^2. At a background
pressure of 1.3x10^{-9} torr, we load more than 10^8 atoms into the trap with a
time constant of 3.3 s. The 1/e lifetime of trapped atoms is 13 s limited only
by background collisions.Comment: 5 pages, 5 figure
- …
