1,148 research outputs found
Nanoscale Electrostatic Control of Oxide Interfaces
We develop a robust and versatile platform to define nanostructures at oxide
interfaces via patterned top gates. Using LaAlO/SrTiO as a model
system, we demonstrate controllable electrostatic confinement of electrons to
nanoscale regions in the conducting interface. The excellent gate response,
ultra-low leakage currents, and long term stability of these gates allow us to
perform a variety of studies in different device geometries from room
temperature down to 50 mK. Using a split-gate device we demonstrate the
formation of a narrow conducting channel whose width can be controllably
reduced via the application of appropriate gate voltages. We also show that a
single narrow gate can be used to induce locally a superconducting to
insulating transition. Furthermore, in the superconducting regime we see
indications of a gate-voltage controlled Josephson effect.Comment: Version after peer review; includes additional data on
superconductivit
Realization of logically labeled effective pure states for bulk quantum computation
We report the first use of "logical labeling" to perform a quantum
computation with a room-temperature bulk system. This method entails the
selection of a subsystem which behaves as if it were at zero temperature -
except for a decrease in signal strength - conditioned upon the state of the
remaining system. No averaging over differently prepared molecules is required.
In order to test this concept, we execute a quantum search algorithm in a
subspace of two nuclear spins, labeled by a third spin, using solution nuclear
magnetic resonance (NMR), and employing a novel choice of reference frame to
uncouple nuclei.Comment: PRL 83, 3085 (1999). Small changes made to improve readability and
remove ambiguitie
- …
