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GRAZING BIFURCATIONS AND CHAOS IN THE DYNAMICS OF A

HYDRAULIC DAMPER WITH RELIEF VALVES∗

R.D. EYRES† , P.T. PIIROINEN† , A.R. CHAMPNEYS† , AND N.A.J. LIEVEN†

Abstract. This paper numerically investigates the closed loop dynamics of a lumped mass at-
tached to a linear spring and a nonlinear hydraulic damper with relief valves. The damper in question
is designed to have piecewise linear characteristics. The inclusion of the nonlinear damper into the
closed loop system leads to regions of periodic motion separated by regions of non-periodic dynamics
as the forcing frequency changes. Analysis of the system uses discontinuous nonsmooth numerical
continuation techniques to follow the stable and unstable solutions along with bifurcation diagrams
to aid the understanding of the non-periodic dynamics. The impacting of the relief valves leads to
grazing bifurcation analysis using discontinuity mappings that explains some ‘corners’ observed in
the bifurcation diagram and predicts the onset of chaotic dynamics. Other nonsmooth events such
as the grazing of an invariant torus are suggested by numerical simulations.

Key words. Grazing bifurcation, Nonlinear, Hydraulic damper, Valve

1. Introduction. This paper conducts a detailed bifurcation analysis of a model
of a common design of hydraulic damper with relief valves, embedded in a simple
closed loop. The model was derived by us in [11], based upon previous work by
[26, 27] and shown to match with experimental data. The purpose of this paper is not
to match experiments but to show how such a simple damper configuration, designed
to produce an overall piecewise force-velocity characteristic can itself be responsible
for undesirable, chaotic dynamics. It should be stressed that these dynamics occur
at an entirely different range of frequencies from that envisaged in the design of
the particular damper that inspired our study in [11]. Let us first explain some
background.

Hydraulic dampers are used in many engineering applications that can vary from
earthquake resistant buildings [13] to car shock absorbers [29]. The advantage of using
a hydraulic damper compared to other kinds of damper, is that the force generated
is a function of the input velocity, resulting in a force that is out of phase with dis-
placement. For applications such as bridges and buildings this means the energy from
the unwanted vibrations can be dissipated without introducing potentially destructive
stress forces. A passive damper does not require any external control input and as
such can only produce a motion-suppressing force. The damper studied in this paper
does however have a nonlinear force-velocity characteristic which can cause unwanted
non-periodic motion. It should be noted that in section 4 an unstable periodic solu-
tion implies the system will deviate to another solution given a perturbation. This
is not the same as the whole system becoming unstable due to the damper. Such an
unstable system could have dynamics such as unbounded growth of a displacement.
This does not occur in the parameter range studied in this paper.

One of the primary reasons for modelling a system using physically-based param-
eters is to enable some degree of optimisation or improvements to the system without
having to manufacture a new unit. However as suggested above, some parameter
changes could lead to the system becoming unstable or unpredictable. This paper
will focus upon the different types of dynamics that can result from a simple and cur-
rently used damper system. The parameter values chosen are typical of the damper
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2 R.D. EYRES ET AL

studied in [11]. The varying parameter will be the forcing frequency of the system.
The frequency range studied is not necessarily representative of any real system but
displays dynamics that might occur at more realistic frequencies in other areas of
parameter space.

1.1. Nonsmooth dynamical systems. Nonlinear dynamical systems can often
be modelled with smooth vector fields, i.e. differentiable in all regions where the system
is defined, and where the solution trajectories are smooth. However, for real systems
this assumption is not always valid, and in many examples the vector field can change
suddenly, for example a ball bouncing against a visco-elastic support. If this type
of system is applicable then the system can no longer be considered smooth, and is
referred to as nonsmooth. In many situations the nonlinear system can be described by
a set of functions that apply in separate regions of the phase space. This type of system
is referred to as Piecewise Smooth (PWS) systems or hybrid systems as the equations
defining the system are smooth for all values in the permitted n-dimensional phase
space except for across the (n-1)-dimensional manifold that separates the regions. A
PWS system with state x at time t can be written as

ẋ = fi(x, t), x ∈ Si,

where fi is defined in Si and is smooth. PWS systems are often classified into three
different categories (see [15]), namely

1. Piecewise smooth continuous systems: There is a discontinuity surface
where the vector fields are equal but the derivative of the vector field across
the surface is discontinuous.

2. Filippov systems: The vector field at the discontinuity surface is discon-
tinuous.

3. Impacting systems: The discontinuity surface acts as a boundary between
allowed and forbidden regions the of phase space. There will be a jump in
the state at this boundary.

The system studied in this paper can be classified as both type-1 and type-3. The
impacting of valves against their seat leads to type-3 discontinuities while the opening
of the valves can be considered a smooth transition and so is of type-1.

In nonsmooth systems there can be a transition in the overall dynamics without
the systems undergoing a standard bifurcation. This is for instance the case with
a grazing bifurcation. A grazing bifurcation of a limit cycle occurs when the orbit
approaches a discontinuity surface tangentially. The analysis of grazing bifurcations
has attracted a lot of attention in recent years (see [2, 5, 6, 9, 12, 19, 20, 21, 30, 31])
and continuous to be a hot topic.

This paper will use numerical techniques to continue both stable and unstable
periodic solutions of a nonsmooth system (see e.g. [1]). The method takes into ac-
count the jumps in state or change in vector fields at the discontinuity surfaces and
determines the stability of limit cycles. The existence of periodic solutions created
at a grazing point will also be investigated using the methods described in section
4.2. To the knowledge of the authors this is the first time these techniques have been
applied to a system similar to the one analysed here.

The reminder of the paper will be split as follows. Section 2 will describe the
damper model and the full dynamical system that will be studied. The next section,
section 3, will describe the results of a set of simulations that give us a crude un-
derstanding of the types of dynamics that occur in the system for the given range
of parameter values. A stroboscopic approach will be used with a constant initial
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Fig. 2.1. A schematic view of the hydraulic damper with relief valves

condition. Section 4 uses a method to numerically follow the periodic orbits found in
section 4. The different bifurcations that occur will be highlighted and the nonsmooth
bifurcations will be analysed. Finally, section 5 makes some concluding remarks about
the significance of this work.

2. Modelling. A number of authors have modelled the dynamical properties of
hydraulic piston dampers [24, 26] of the kind used in many mechanical situations.
Previous models for such dampers have typically studied the open loop dynamics and
have shown that the fluid compressibility and head loss due to the orifice geometry
and blow-off valves can have significant effects [10, 11, 14, 27]. The specific damper
configuration studied in this paper is depicted in Figure 2.1, where the fluid fills the
unshaded regions in both chambers 1 and 2. Under low piston velocity conditions
the damper operates as a normal orifice damper. All the flow between chambers
passes through the cylindrical orifice, of diameter d, which generates the pressure
difference across the piston and hence a force. When the pressure difference becomes
large enough, one of the relief (or blow-off ) valves will open, which limits the force
generated at high velocities. The critical pressure when this occurs is denoted by Pcrit.
The force response of the damper for an increasing velocity will then become piecewise
as illustrated in Figure 2.2. In earlier work [11], we produced a parametric model of
this damper incorporating the dynamics of the blow-off valves and the compressibility
of the fluid. A good match was found with experimental data for the open loop
dynamics.

This paper will consider simulations of this damper model embedded within the
simple closed-loop system illustrated in Figure 2.3. There is a lumped body connected
to a stationary wall via a linear spring and the damper is connected to the mass and
the wall, in parallel to the spring. Hence, the general equation of motion for the
system is given by

M
d2Q(t)

dt2
+ KQ(t) + Fd(t) = F (t)(2.1)

where Q(t) is the displacement of the body with mass M , K is the linear spring
stiffness, Fd(t) is the force provided by the damper and F (t) the external forcing. By
letting

F (t) = σ sin(ωt),(2.2)

where σ and ω is the amplitude and frequency of the external forcing, respectively,
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Fig. 2.3. Diagram of the closed system used with a linear spring, stiffness K.

and

Fd(t) = A∆P (t),(2.3)

where A is the area of the piston, ∆P (t) is the pressure difference between the two
chambers, and assuming the inertia of the piston is negligible the overall equation of
motion for the closed-loop system can be written

M
d2Q(t)

dt2
+ KQ(t) + A∆P (t) = σ sin(ωt).(2.4)

2.1. The damper model. The system has three degrees of freedom, the dis-
placement of the lumped mass, Q(t), and the displacement of the two valves, V1(t)
and V2(t). The pressure difference between the two chambers in Figure 2.1, ∆P (t),
is calculated using the model of the damper developed in [11]. As Vi(t

−) = 0, for
i = 1, 2, i.e. when one of the valves impact the valve seat, the impact law

dVi(t
+)

dt
= −r

dVi(t
−)

dt
(2.5)

is applied, where r is the coefficient of restitution, t+ is the time immediately after
impact and t− the time immediately before. In this paper r is set to zero. The exact
value of r is unknown for the damper modelled because the valve is unaccessible
and so cannot be tested. A value of zero is a good approximation of the system
and occurs in numerous examples where the energy wave produced by the impact
does not rebound and so does not cause the impacting body to move away from the
impacting surface. A common example of the sticking of the impacting object occurs
in church bells [4], where the energy is dissipated as sound. Another situation where
there is sticking is found in systems where the energy does not rebound due to the
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geometry of the system rather than because of energy conversion such as an infinitely
long Newton’s Cradle. In our case energy can be dissipated through the viscous fluid
analogous with a plug in a bath. Setting the coefficient of restitution to zero implies
there will be no rebound of the valve as a result of the impact velocity. The valve can
open immediately after closing if the pressure difference between the two chambers is
sufficiently high as discussed above.

The dynamics of the relief valves and the pressure difference can be described by
the following second order system derived in [11]

d2V1

dt2
=






(Av1∆P (t) − δ1
dV1

dt
− k1(V1(t) + Vc1))/mv1, if V1 < 0,

(Av1∆P (t) − k1Vc1)/mv1, if V1 = 0 and (Av1∆P (t) − k1Vc1)/mv1 < 0,
0, otherwise,

(2.6)

d2V2

dt2
=





(Av2∆P (t) − δ2
dV2

dt
− k2(V2(t) + Vc2))/mv2, if V2 > 0,

(Av2∆P (t) − k2Vc2)/mv2, if V2 = 0 and (Av2∆P (t) − k2Vc2)/mv2 > 0,
0, otherwise,

(2.7)

d∆P

dt
=

1 + ζ

ζβV

[
A

dQ

dt
− sign(∆P (t))

(
−D1 +

√
D2

1 + 4D2|∆P (t)|
2D2

+ R(V1, V2, t)
√
|∆P (t)|

)]
,

(2.8)
where

R(V1, V2, t) = Cpo

(
γ(Ξ1 + Ξ2)

2

1 + γ(Ξ1 + Ξ2)

)
πdvsin(α)

√
2

ρ
,(2.9)

and

Ξ1 =

{
−V1, if V1 < 0,
0, otherwise,

Ξ2 =

{
V2, if V2 > 0,
0, otherwise.

(2.10)

The physical constant Av is the area of the valve of diameter dv, ζ is the proportional
volume of chamber 1 compared to chamber 2, β is the compressibility constant of the
fluid in the damper and V is the average volume of chamber 1. Taking right to left as
the positive displacement direction in Figures 2.1 and 2.3, valve 1 will be open when
the displacement V1 is less than zero, see (2.10). Similarly a positive displacement of
valve 2, V2 > 0, indicates it is open. The losses due to a given valve deflection are
characterised by an initial slope proportional to γ and maximum loss for the valve
fully open of Cpo. The equation motion for valve i is defined by the mass of the valve
mvi, spring stiffness ki and damping term δi.

R is a measure of the magnitude of flow going through the valve and is strictly
positive for values of valve half angle α < π

2 . The direction of flow is considered in
(2.8) through the term sign(∆P (t)). The constants D1 and D2 represent the linear
and quadratic head losses due to the fluid flow through the orifice and are given by

D1 =
128lη

πd4
and D2 =

8cρ

π2d4
,(2.11)

where the orifice in the piston has length l and diameter d (cf. Figure 2.1). Further,
η is the dynamic viscosity, ρ is the density of the hydraulic fluid, c is the discharge
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coefficient of the piston orifice, and Vci
is the precompression of the springs in relief

valve i given by

Vci
=

Pcriti
Av

k
, i = 1, 2.(2.12)

The spring precompression determines the critical pressure assuming the area of the
valve does not change.

Equation (2.6) represents relief valve 1. It includes terms for the spring of stiffness
k1, damping δ1 and the forcing by the pressure difference between the two chambers
acting on the area of the valve Av1. The losses in the bypass tube are assumed to
be small compared to the losses due to the piston orifice and valves. Equation (2.7)
corresponds to (2.6) but for valve 2. The final equation (2.8) relates the compressibility
of the fluid to the flows in the damper. For incompressible flow the volume flow, AdQ

dt
,

for a given piston velocity will flow in some proportion through the main orifice and
bypass tubes. A compressible flow implies that there will be a difference between
the theoretical flux (AdQ

dt
) and the actual total flux of the orifice and bypass tubes.

This difference is proportional to the rate of change of ∆P as seen in (2.8). The
constant of proportionality is a function of the compressibility and average volume
of the chambers, V . If either the compressibility or volume of the chambers were
decreased, there would be a larger rate of change of pressure difference for a given
change in piston velocity. The damper would therefore become more responsive to
rapid changes in the systems velocity.

2.2. Nondimensionalisation and parameters. In practice, the damper is
likely to be designed to be as symmetric as possible, so the two valves are considered
to be identical with the same spring stiffness, and the displacements of the valves
are in the same direction as the piston. In all numerical results presented below, the
positive displacements are for valve 2 and negative displacements are for valve 1.

Assuming the chambers are of equal volume so ζ = 1 and we have symmetric
springs so Av1 = Av2, δ1 = δ2, k1 = k2 and mv1 = mv2 we can reduce the number of
coefficients appearing in the equations of the system (2.4)-(2.8). By letting

X1 = V1, X3 = V2, Q1 = Q, p = ∆P
Pcrit

X2 = dV1

dt
, X4 = dV2

dt
, Q2 = dQ

dt
,

(2.13)

and writing Equations (2.4)-(2.8) as a system of first order ordinary differential equa-
tions we get

dQ1

dt
= Q2,

dQ2

dt
= C1 sin(ωt) − C2Q1 − C3p,

dX1

dt
= X2,

dX2

dt
=






C4p − C5X2 − C6X1 − C7, if X1 < 0,
C4p − C7, if X1 = 0 and C4p − C7 < 0,
0, otherwise,

dX3

dt
= X3,

dX4

dt
=






C4p − C5X4 − C6X3 + C7, if X3 > 0,
C4p + C7, if X3 = 0 and C4p + C7 > 0,
0, otherwise,
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Table 2.1

Parameter values used for simulations

Parameter Old parameter Value
C1

σ
M

4 × 104

C2
K
M

4 × 106

C3
APcrit

M
2 × 102

C4
AvPcrit

mv
1.98 × 104

C5
δ

mv
5 × 103

C6
k

mv
2 × 107

C7
Vc

mv
1.96 × 104

C8
(1+ζ)A

ζβV Pcrit

4.21 × 105

C9 − (1+ζ)D1

ζβV Pcrit2D2

−1.66 × 104

C10
(1+ζ)2

√
Pcrit

(ζβV Pcrit)2D2

2.89 × 103

C11
(1+ζ)Cpoγπdv sin(α)

√
2

ζβV
√

Pcrit
√

ρ
1.31 × 1014

C12 γ 4 × 105

r 0

dp

dt
=
{

C8Q2 − sign(p)
(
C9 +

√
C2

9 + C10|p| + R(X1, X3, t)
√

|p|
)

,(2.14)

where

R(X1, X3, t) = C11

(
(−X1H(−X1) + X2H(X2))

2

1 + C12(−X1H(−X1) + X2H(X2))

)
(2.15)

and H is the Heaviside step function, the constants C1 −C12 are defined in Table 2.1
and the impact law (2.5) is used for the valve-valve seat impact. The values used are
not taken from a particular physical system but are indicative of a typical macro-scale
device and are used here to illustrate the type of dynamics that can occur. The forcing
frequency ω will be the parameter that is varied to capture the different dynamics.

3. Simulation results. The dynamics of the closed-loop system presented in
this paper can be categorised by three main frequency regions. Firstly at low forcing
frequencies the damper is responsive enough to ensure there is only one valve open
at any moment. The second region to be considered is for very high frequencies
where the compressibility of the fluid becomes the overriding factor. In this region
the system becomes sluggish and a point is reached when the critical pressure will
not be reached, and the valves will never open. In between these two regions there
is a possibility of both valves being open at the same time. The dynamics in this
intermediate frequency range form the main focus of this paper. First though, let us
consider the dynamics of low and high forcing frequencies.

3.1. Low and high frequency forcing; regular motion. At relatively low
forcing frequencies the system behaves in a regular period-one manner (i.e. repet-
itive motion in which each valve opens once per period). The motion of the mass
is sinusoidal and each valve has time to open and close before the other opens as
shown in Figure 3.1. There are oscillations of the valve, however these oscillations do
not affect the motion of the mass since the force generated by the damper is smaller
than the overriding force generated by the linear spring in Figure 2.3. The forcing
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(a) Displacement of valves versus time

0.27055 0.2706
−2

−1.5

−1

−0.5

0

0.5

1

x 10
−5

t

V
al

ve
 d

is
pl

ac
em

en
t

X
3
 

X
1
 

(b) Magnified section of Figure 3.1(a) show-
ing valve releasing from the valve seat.

Fig. 3.1. Low frequency motion, ω = 447rad/s. Displacement of the valves versus time. The
red line corresponds to valve 2 (Q3) and the black line to valve 1 (Q1).

frequency used in Figure 3.1 is 10% of the natural frequency of the spring valves which
is 4.47× 103 for the parameter values in Table 2.1. The response of the mass is more
or less purely sinusoidal with the same frequency as the forcing frequency.

At high frequencies numerics show that the dynamics are once again regular
and dominated by the compressibility of the fluid inside the main chambers of the
damper. The pressure difference inside the damper does not get high enough to open
the valves before the direction of the mass is reversed. A result of the sponginess of
the fluid is that the motion from the mass is absorbed before the valves can open.
The damper then only operates in the low pressure region with the valves closed. This
increased effect of the compressibility means the force generated effectively becomes
a linear function of the mass displacement rather than a nonlinear function of the
velocity. Overall, the combined effect of these two factors leads to a linear force from
the damper. The whole system is then linear so there will be no irregular dynamics
occurring in this high frequency region. Figure 3.2 shows a time history of the mass
displacement, at a forcing frequency one thousand times the natural frequency of
the relief valves. It can clearly be seen in Figure 3.2 that the system decays to
low amplitude oscillations rather than producing a high amplitude periodic motion
as it did at the lower frequency forcing. The frequency of the local low amplitude
oscillations is again the same as the forcing frequency.

3.2. Mid-frequency forcing; chaotic motion. More unpredictable dynamics
occurs when the forcing frequency is in an intermediate range between the two cases
described above. We consider in particular ω in the range 6500 − 20000 which is
between about 1.5 and 4.5 times the natural frequency of the spring valves. One of
the easiest ways to visualise the change in dynamics of a system is to introduce a
Poincaré section Σ and plot a point every time the trajectory crosses the section as
the forcing frequency changes. This can be seen in Figure 3.3 as a stroboscopic plot,
where the last 25 cycles, of a run of 500 cycles, are plotted. Thus the results present
the steady state dynamics after the transients have died out. The Poincaré section Σ
is taken at Q2 = 0 so the section is defined as

Σ :=
{
(Q1, Q2, X1, X2, X3, X4, p) ∈ R

7 | Q2 = 0
}

.(3.1)
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Fig. 3.2. High frequency motion, ω = 4.47 × 106rad/s. Displacement of mass versus time.

The corresponding bifurcation diagram plots the mass displacement Q1 for each inter-
section with the Poincaré section. All simulations in this section have initial conditions
Qi(0) = 0 for i = 1, 2, Xj(0) = 0 for j = 1, . . . , 4 and p(0) = 0. The model was simu-
lated in Matlab [16] with great care taken using hit crossing detection to ensure the
valve opening and closing events were computed accurately. Hence each simulation
took on average half an hour to compute on a Pentium 3 processor with clock speed
1 GHz, running Microsoft Windows NT. The number of points available in a realistic
time period is therefore limited. The aim of this ‘brute force’ bifurcation diagram in
Figure 3.3 is to find the broad features of the system so that interesting regions of
parameter space can be investigated further with more sophisticated methods.

Figures 3.4 and 3.7 are similar bifurcation diagrams for a smaller forcing frequency
range. In both figures a näıve path-following scheme has been used to capture the
trend in the dynamics. The initial conditions for each new frequency value was chosen
to be the final state of the previous simulation in an attempt to remain on the same
attractor. Figure 3.7 shows a large amount of ‘noise’ on top of the periodic solutions.
In the frequency range shown in the figure there is a coexisting chaotic attractor. The
basins of attraction for the 7-degree-of-freedom system in this region seems not to be
as regular as for lower frequencies and as a result the simulations can jump between
solutions.

The remainder of this section will look at the different dynamics displayed by the
system. In Figure 3.3 the different regions are labelled A-D, which we will refer to in
some of the figures in this section.

For frequencies below 7.18× 103 rad/s the system behaves symmetrically as seen
in Figure 3.5(a). The only stable motion found below this frequency are period-
one orbits, illustrated in Figure 3.4. In Figure 3.5(a) one can see that both valves
are alternately open by the same amount, which leads to a symmetric force and a
symmetric mass motion about zero displacement. The motion of the valves in Figure
3.5(a) are different from those in Figure 3.1(a) since there are time intervals where
both valves are open at the same time. Nevertheless the motion is still period-one and
symmetric. Furthermore, the motion of the valves shown in Figure 3.5(a) displays a
typical event sequence for frequencies that lead to period-one motion.

When the forcing frequency reaches 7.18 × 103 rad/s the system undergoes a
symmetry breaking bifurcation (a super-critical pitchfork bifurcation). At this type
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Fig. 3.3. Bifurcation diagram showing mass displacement versus forcing frequency at the
Poincaré section Q2 = 0. The amplitude of forcing is 2 × 106N.

of bifurcation a stable symmetric period-one branch turns unstable and two stable
asymmetric period-one solutions are born. The new stable branches coexist up to
8405 rad/s, shown in Figure 3.4 as the two lines separating from one another. The
blue solution will be referred to as the top solution while the red branch is part of
the bottom attractor. Figures 3.5(c) and 3.5(b) illustrate the two stable solutions at
8000 rad/s. For the bottom attractor (the higher magnitude of mass displacement in
Figure 3.4) in Figure 3.5(b) the valves are open an unequal amount. Valve 1 (negative
displacement) opens much more compared to valve 2. This is in direct contrast to
Figure 3.5(c) where valve 2 opens more than valve 1. The motion of the valves for the
two attractors are mirror images of each other. This difference in motion of the two
valves is caused by the change in the force trajectory of the damper. The damper in
the bottom attractor produces a much larger positive force than for the top attractor.

For increasing frequencies the asymmetric period-one solution suddenly disap-
pears and a nonperiodic (chaotic) solution appears. This occurs at the point when
one of the valves encounters a low-velocity impact on the valve seat during the tran-
sient stages of the simulations. The previously impacting trajectory no longer impacts
the valve seat, which leads to a quantitatively different trajectory which lies within
the basin of attraction of a coexisting attractor. The possibility of jumps to coex-
isting nonperiodic attractors can often be encountered in nonsmooth systems. Here
a forcing frequency of 8406.4 rad/s leads to motion where valve 1 impacts the valve
seat whereas a slight increase (0.1 rad/s) of the forcing frequency leads to the valve
completely missing the valve seat, which yields a completely different mass trajectory.
In between these two forcing frequencies there will be a point when valve 1 impacts
the valve seat with a zero velocity. This is defined as the grazing of valve 1 on the
valve seat. The two chaotic attractors can be seen in Figure 3.4 as the red and blue
dots.

After the nonperiodic solution (through section C in Figure 3.3) there is a large
span of forcing frequencies that produce a stable period-three solution. A typical



BIFURCATIONS IN A HYDRAULIC DAMPER 11

7000 7500 8000 8500 9000
−14

−12

−10

−8

−6

−4

−2

0

2

x 10
−4

Forcing frequency, ω

Q
1
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phase portrait of the period-three orbit can be seen in Figure 3.6(a) for a forcing
frequency of 13.86× 103 rad/s.

In the case of the higher frequency route to chaos there is no sudden jump from
periodic to nonperiodic. Instead there seems to be a period doubling cascade of
the solution as the forcing frequency increases. Figure 3.7 illustrates the case of the
period-three solution becoming a period-six solution at around 1.825×104 rad/s. The
period-six solution can be seen in Figure 3.6(b) for a forcing frequency of 1.843× 104

rad/s.

4. Examining the onset of chaos. For most applications the most important
areas of parameter space to understand is where transitions between stable, unstable,
and chaotic motions occur or where such motions cease to exist. This section will
focus on forcing frequencies in the range 7000-19000 (see section 3.2 and Figure 3.3).
The previous section did not carefully follow any of the solution branches and so
we were unable to accurately detect the bifurcation points. In what follows we will
follow solution branches by using a continuation algorithm to allow for both stable
and unstable branches of periodic orbits to be continued through parameter space.

4.1. Numerical continuation. In the present paper we are generally interested
in recurrent motion and in particular limit cycles. From this perspective, the main
idea of the implemented continuation algorithm is to locate fixed points of Poincaré
maps (which is equivalent to finding periodic orbits) and to follow branches of such
solutions under parameter changes. To do this we introduce a Poincaré section in the
phase space, such that transversal intersections of the section are assured and so that
any other events (impacts or sticking) are relatively far away from the section. The
method to continue fixed points of this map is an extension of that presented in [8]
to take particular account of the various switching hyperplanes in the phase space of
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Fig. 3.5. Displacement of the valves versus time for given forcing frequencies.
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(2.14). The key idea is to locate fixed points using Newton’s method. This requires
the Jacobian of the Poincaré map, which is found by solving the first variational
equations for the nonsmooth system. However it is not possible to solve the first
variational equations in as straight forward way as you would for a smooth system
since any perturbations caused by the discontinuities have to be taken into account.
This is done by applying corrections to the flow Jacobian at the discontinuities. In
practise this is achieved by multiplying the flow Jacobian with correction matrices
(sometimes referred to as saltation matrices). These matrices are found by the use of
local discontinuity mappings [8, 12, 15, 17]. Further, convergence of Newton’s method
is only assured if a periodic solutions is hyperbolic or if the trajectory does not ap-
proach any of the discontinuity surfaces tangentially (at, for instance, grazing). When
a hyperbolic solution is found we know from the Implicit Function Theorem that there
exists a branch of hyperbolic periodic solutions under any parameter change. Once a
periodic orbit has been found, and a parameter has been changed, polynomial extrap-
olation is used to predict initial conditions for the new Newton iterations. Further
details on how to implement and use this method in nonsmooth systems can be found
in [1, 8, 22, 23].

The Jacobian of the Poincaré map can also be used to assess the linear stability
of a solution located with the above mentioned method. The condition for stability
being that all eigenvalues of the Jacobian are within the unit circle, but if any of the
eigenvalues are outside the unit circle the solution is unstable.

As with smooth systems, the stability of periodic orbits of nonsmooth systems
can be lost under parameter variation through standard bifurcations- saddle-node
(fold), pitch-fork (symmetry breaking), flip (period doubling) or Hopf which can be
detected from the spectrum of the Jacobian matrix. In addition, we find nonstandard
bifurcations that are unique to nonsmooth systems [3]. Here we focus on one such
possibility, the grazing bifurcation.
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Fig. 4.1. Sketch of the possible dynamics of valve 2 where W = ∆P −C7/C4 from section 2.2,
X3 is the displacement of the valve, X4 is the velocity of the valve.

4.2. Grazing bifurcations. For the system modelled in this paper it is the
motion of a valve that can cause a grazing bifurcation and thereby drastically change
the dynamics. A grazing event occurs when a valve impacts a valve seat with zero
velocity.

A schematic of the various ways in which a valve can impact the valve seat is
depicted in Figure 4.1. For definiteness we suppose the second valve undergoes the
grazing. Owing to the symmetry between the second and third set of equations in
(2.14), similar considerations apply to the first valve. Trajectory T1 represents the
case where the valve impacts the valve seat and the pressure is below the critical
opening pressure for the valve (as discussed in section 2). The velocity of the valve
will be vanish (X4 = 0) since the coefficient of restitution is assumed to be zero (see
(2.5)). The valve will remain closed until the critical pressure is reached, i.e. when
W = 0, whereafter it will leave the X3 = 0 plane along R1. T3 is a special case of
T1 where the valve displacement X3 approaches zero as the velocity X4 approaches
zero for a pressure less than the critical pressure. It is unlikely that this will occur
however, since the force of the valve spring will be much greater than that of the
pressure forcing it open. In the limit however there could be a grazing condition as
the intersection of T3 with X4=0 approaches W = 0.

For impacts of the valve when the pressure in the system is greater than the
critical pressure (W > 0) there will be an immediate rebound of the valve. In the
general case the trajectory will follow a similar path to T2 in Figure 4.1. The valve will
impact on the valve seat with a negative velocity on to the X3=0 plane. The velocity
X4 will jump to zero before rebounding along the trajectory R3. If the intersection
of T2 with X3=0 coincides with the line X4=0 there is a grazing event since the
displacement and velocity of the valve is instantaneously zero, illustrated by T4. The
trajectory of the valve will then follow R2.

A grazing point on a bifurcation diagram can be defined as the point at which a
previously non-impacting periodic orbit impacts a surface tangentially for a change
in the bifurcation parameter. Alternatively a grazing point can be defined for a
previously impacting orbit that stops impacting for a small change in the bifurcation
parameter. In the generic case a grazing bifurcation can lead to both impacting
and non-impacting solutions. To find which of these occurs, and to fully unfold the
dynamics, the technique of discontinuous mappings [8] can be used. See Appendix A
for an application of that technique to the damper modelled in this paper.
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Fig. 4.2. Bifurcation diagram for investigated forcing frequencies. Blue points = stable; Red
points = unstable. Bifurcation points indicated as: SB for symmetry breaking; H for a Hopf; PD
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4.3. Numerical continuation results. A bifurcation diagram for the mid fre-
quency region (6500-18000) is shown in Figure 4.2, where the path following technique
described in section 4.1 is used. In what follows the Poincaré section used in the bi-
furcation diagrams is Σ, which is given in (3.1).

Up to ω = 7180 the only solution found is a stable symmetric period-one orbit
labelled as branch A1 in Figure 4.2(a). This solution branch undergoes a super-critical
symmetry breaking (pitchfork) bifurcation at ω = 7180 as one of the eigenvalues of
the Jacobian of the Poincaré reaches the unit circle along the positive real axis. The
resulting unstable branch A2 continues to exist for the whole parameter range above
ω = 7180. As expected, two new stable branches asymmetric period-one solutions
are born at the pitchfork bifurcation, labelled A3 and A6 in Figure 4.2(a), where the
trajectories corresponding to the stable branches are mirror images of each other, as
discusses in section 3.2. These two branches exist up to 8485.8, where an eigenvalue
of the Jacobian crosses the unit circle along the positive real axis indicating a fold
bifurcation. It is notable that the stable branches (A3 and A6) seem to exist for a
larger range of forcing frequencies than observed in section 3.2 in Figure 3.3, where
a brute force stroboscopic approach was used. An explanation for this could be that
one of the valves impacts with low-velocity before the transients have died out, which
causes the solution to jump to a coexisting chaotic attractor (see also section 3.2)
instead of the stable period-one solution. This indicates that the chaotic motion
seen in Figure 3.3 is not created as a direct result of bifurcations of the period-one
solutions branches A3 or A6. At ω = 8485.8 two unstable branches A4 and A7 fold
back as the forcing frequency decreases and finally cease to exist at 8116.1, i.e. they
cannot be followed further. The reason is that valve 1 (or valve 2) stops impacting
the valve seat at this point, i.e. the trajectory grazes the valve seat, indicating that a
grazing bifurcation has been encountered (see further section 4.4 and Figure 4.3). As
expected, the largest eigenvalue in magnitude of branches A4 and A7 tends to infinity
as it approaches the grazing point. There are two other unstable solution branches,
A5 and A8, that appear at ω = 8116.1, where the branches A4 and A7 disappeared,
that can be continued for increasing frequencies. The eigenvalues with the largest
magnitude (actually a complex pair) of branch A5 at the grazing point is 1.09. In
contrast to the the branches A4 and A7, trajectories corresponding to branches A5
and A8 have non-impacting trajectories of one of the valves for forcing frequencies
above ω = 8116.1, and at 8116.1 the non-impacting valve just grazes the seat (see
Figure 4.3). The two cases are mirror images with valve 1 grazing on branch A5 (cf. in
Figure 4.3(a)) and valve 2 grazing on branch A8 (cf. Figure 4.3(b)). This particular
situation will be discussed further in section 4.4.

The branches A5 and A8 can now be continued for increasing frequencies. At
ω = 9598 the solution branch undergoes a subcritical flip (period-doubling) bifurcation
as one of the eigenvalues of the Jacobian becomes −1 at this frequency. The period-
two branches B1 in Figure 4.2(b) exist for decreasing frequencies until they abruptly
stop at approximately ω = 9414.4 in another grazing bifurcation. This situation is
similar to what happened to the period-one solution discussed above. Also, similar
to the period-one case, there are a number of different solution branches coming
together at this grazing point(see further section 4.4). In Figure 4.2(c) we can see an
unstable period-two branch, D1 in Figure 4.2(d), and an unstable period-four branch,
B2 in Figure 4.2(b). These branches are in addition to the period-two branches from
the period-doubling bifurcation, being born at ω = 9414.4 and can be continued for
increasing frequency. The period-two branch D1 can be continued for the whole mid-
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Fig. 4.3. Time histories showing grazing of the valves on the branches ‘A5’ and ‘A8’ in Figure
4.2(a).

frequency interval, but at ω = 10538 it undergoes a supercritical period-doubling
bifurcation and turns stable along D2. The new stable period-four branches ( see D6
in Figure 4.2(d)) exist for decreasing frequencies until ω = 10533 where the solution
undergoes a fold bifurcation as an eigenvalue crosses +1. The resulting unstable
period-four branch D5 continues for increasing frequencies up to ω = 10660 where
it connects back to the original period-two branch at a period-doubling bifurcation.
The stable period-two solution, D2, continues for increasing forcing frequency up to
ω = 10651 where two complex conjugate eigenvalues of the Jacobian leave the unit
circle resulting in a Hopf bifurcation. The period-two branch continues as the unstable
branch D3 up to the period-doubling bifurcation, where it comes together with the
branch D5 after which point the unstable period-two branch D4 continues for all the
investigated frequency range.

For higher forcing frequencies there exists a stable and an unstable symmetric
period-three solution. The solutions are born at a fold at ω = 11600 (see Figure
4.2(e)) in a similar way to the two stable period-one solution at low frequencies,
producing a stable period-three, E2, and an unstable period-three, E1. The stable
period-three solution exists with the unstable branch up to ω =17480 at which point
there is a symmetry breaking bifurcation followed by a period-doubling cascade to
chaos as suggested by Figure 3.7.

Let us now take a closer look at what happens at the different grazing bifurcations.

4.4. Analysis of grazing bifurcations. In the discussion in section 4.3 two
different grazing bifurcations were encountered, at ω = 8116.1 and ω = 9414.4 (see
Figure 4.2(c)), where period-one and period-two limit cycles experienced grazing,
respectively. Let us take a closer look at the mechanism and behaviors in the vicinity of
these grazing bifurcations and also compare what the conditions outlined in Appendix
A predict and what the numerics discussed above show. The section Π used for the
grazing bifurcation analysis is taken at the grazing point of the grazing valve, defined
for valve 2 as

Π := {(Q1, Q2, X1, X2, X3, X4, p) | X4 = 0} .

Let us start at the grazing of the period-one orbits at ω = 8116.1. Here two
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Fig. 4.4. Eigenvalues for branches A4 and A5 in Figure 4.2(a) up to the grazing point.

unstable branches come together in phase and parameter space for all states but their
eigenvalues are very different from each other. One one hand, branch A4 has one real
eigenvalue larger than one in magnitude which increases exponentially in magnitude
as the solution approaches the grazing point (see Figure 4.4(b)). On the other hand,
branch A5 has two complex conjugate eigenvalues outside the unit circle that does
not change much as the solution approaches the grazing (see Figure 4.4(a)). Both
these scenarios fit perfectly in to what is to be expected in a grazing system. In
the former case the nonzero elements of the saltation matrix that is involved in the
grazing bifurcation tends to infinity as the grazing bifurcation is approached, thus the
large magnitude of the eigenvalue. In the latter case the trajectory does not know
that it will soon graze one of the surfaces, which was the case in the former situation,
and thus the eigenvalues do not change more than they would have away from the
grazing bifurcation.

In the case of the period-one grazing point at 8116.1 the only impacting solution
we found numerically is the period-one solution with only a single impact per period
as plotted in Figure 4.2. It is notable that the direction of the impacting period-
one orbit and the non-impacting period-one orbit both exist on the same side of the
bifurcation point.

The observations from the numerics can be verified by using the analysis outlined
in Appendix A. The existence conditions for the orbits generated at the grazing point
are derived in Appendix A along with the direction of the solution branches as they
leave the grazing point. The system and existence conditions are listed as (A.21)-
(A.23). The impacting surface, h(x, µ), is defined as the impacting of valve 2 (as is
the case with the period-two/four grazing seen in Figure 4.2(b)) so (Dµh)(0, 0) = 0,
(Dxh)(0, 0) = X3 from (2.14). The directions of the impacting branches are defined
by the argument at the end of Appendix A.

When applying the grazing analysis to the period-one grazing point we obtain
the following matrices with reference to Appendix A.

A =




0.0467 4.4042 × 10−4 0.3208 8.889 × 10−6 0.0015 −9.315 × 10−8 −0.0155
−1861 0.0931 −377.25 −0.0059 −76.58 −0.0124 8.807

−0.9529 3.677 × 10−4 −1.2709 −2.180 × 10−5 −0.0155 1.558 × 10−5 0.0220
−7050 −11.6379 56164 0.9760 7897 1.1580 −1233
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0.6160 −0.0027 11.15 1.95 × 10−4 1.2554 1.27 × 10−4 −0.2081
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B =
[

0 0 1278.1 0 0 0 0
]T

C =
[

0 0 1 0 0 0 0
]

M =
[

39392 5.3954× 107 36804 1.4788 × 108 0 0 −56776
]T

Using these values we find that the only possible impacting orbit is the observed
period-one orbit on the same side of the bifurcation as the non-impacting orbit. It
should be noted that while the stability of the orbits cannot easily be calculated for
this seven-dimensional system, the impacting orbits are almost certainly going to be
unstable because the magnitude of one of the eigenvalues will tend to infinity as the
orbit approaches the grazing point.

At the grazing point at ω = 9414.4 the numerics suggest more than two periodic
orbits are created. A suggestion of the possible dynamics can be obtained from
Figure 4.2. Two non-impacting period-two solutions are found at the period-doubling
bifurcation. These orbits annihilate at the grazing point where a period-four single-
impacting solution is produced toward the top of Figure 4.2 and in Figure 4.2(b).
A period-two single-impacting solution is born toward the bottom of Figure 4.2 at
ω = 9414.4. All the impacting orbits found using the numerics occur on the same side
of the grazing point as the non-impacting orbit. The impacting orbit solution branches
from a grazing point are in general unstable as the magnitude of the eigenvalue of
the solution tends to infinity as seen in Figure 4.4(b). As such there is a possibility
of many unstable solutions being produced at the grazing point that cannot easily be
found using simple numeric searches.

The system in (A.21) should be solved exactly at the grazing point. The values
taken for the following calculations are taken from the non-impacting period-two orbit
computed at the grazing point.

A =




−0.8360 2.4027 × 10−4 0.0456 2.5376 × 10−6 −0.0160 −1.0459 × 10−7 −0.0059
−771.3872 −0.7168 −438.1495 −0.0138 70.3298 4.9400 × 10−4 18.8140

−1.3322 −0.0011 1.6014 3.4050 × 10−5 −0.0324 −4.7202 × 10−7 0.0389
−5551.8 2.0496 −24675 −0.6015 1264.2 0.0118 −225.9256

−1.2104 −7.9632 × 10−4 0.8271 1.5791 × 10−5 −0.0182 −2.5528 × 10−7 0.0199
−6314.3 0.1876 −18797 −0.4705 952.8446 0.0089 −174.0410

−0.6232 6.4932 × 10−4 −4.5000 −1.1041 × 10−4 0.1869 1.8835 × 10−6 −0.0613




B =
[

0 0 0 1031 0 0 0
]T

C =
[

0 0 1 0 0 0 0
]

M =
[

60182 1.8030× 106 29718 1.8656× 108 32028 1.7653× 108 21317
]T

Using these values, e from (A.17) produces e = −1.6132 × 104 < 0. The non-
impacting orbit will therefore exist for the bifurcation parameter µ < 0. The quantity
s(n), for a period-n impacting orbit, can be calculated from (A.24). The resulting
computation produces a value less than zero for all single impact periodic orbits
denoted as impact sequence (n) for n = 1, . . . , 50, which was the limit of the computers
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matrix inversion using Matlab [16]. Since s(n) < 0 and e < 0, µ must also be negative
if conditions (A.22), (A.23) and (A.25) hold (are positive). The conditions do hold
for all the single-impact orbits up to period-fifty indicating that there can be at least
fifty different unstable impacting orbits being generated at the grazing point in the
same direction as the non-impacting orbit.

The analysis can be extended to more complex impacting sequences although it
is not required here because we have already shown that a huge number of unstable
orbits are generated at the grazing bifurcation. It seems natural therefore to suppose
that this family of unstable periodic orbits is in fact infinite in number and forms
part of the backbone of the numerically observed non-periodic attractor. However,
it is also possible that the first grazing could create a chaotic invariant set. The set
could become stable at the the fold of the other attractor at ω = 8486 (boundary
crisis event) when the chaotic attractor would dominate the dynamics. At the second
grazing point the chaotic attractor changes type as the unstable orbits are born.

4.5. Quasi-periodic motion and chaos. In section 4.4 we showed that the
source of the chaotic attractor could be the grazing bifurcation at ω = 9414.4. The
method used the properties of the grazing orbit to predict the orbits that will be
created at the bifurcation. However, if we look more closely at the structure of the
nonperiodic orbits we find that there may be another source of chaos.

A convenient way of investigating the nature of a nonperiodic solution is to create
a delay plot of the dynamics in the Poincaré section Σ used to create Figure 3.3 (i.e. a
Poincaré section at Q2 = 0, plotting Q1 at each intersection). If Xn is the nth
intersection of the orbit with the section then Xn+i is the (n+ i)th intersection for an
integer i [28]. The plots for a range of forcing frequencies are shown in Figures 4.5 and
4.6. The first 3 plots show the periodic solution for the 2 attractors. Plots (a) and (c)
in Figure 4.5 are from branch A3 in Figure 4.2(b) with plot (b) coming from branch
A6. The 2 attractors persist into the chaotic region. Plots (e), (i) and (l) of Figure 4.5
and plots (a)-(g) of Figure 4.6 are from branch A6 with the rest coming from branch
A3. The first thing to note is that the size of the attractor is increasing as the forcing
frequency increases, suggesting the two attractors are created at around the same
point at a lower forcing frequency than can be followed. The other interesting feature
of the attractors is that the solution does not become completely chaotic straight
away. There is a gradual decline in structure as the forcing frequency increases. Plot
(i) of Figure 4.5 is a good example of the structure of the quasi-periodic solution at a
forcing frequency of ω = 8944. There appears to be a phase-locking of the nonperiodic
solution. The trajectory is close to becoming period-nine as shown in Figure 4.7, a
delay plot of nine iterates. The nonperiodic attractor approximately aligns along the
Xn+9 = Xn line. The shape of the attractors approach that of a square-root mapping
with an infinite gradient relative to the Xn+9 = Xn line. This is typical of impacting
systems with grazing.

The quasi-periodic period-nine attractor is illustrated clearly for a higher forcing
frequency of ω = 9212 in Figure 4.8. The figure plots the angle in phase space between
Q1 and Q2 at a Poincaré section created by taking the states of the system at equal
time intervals defined by one period of the forcing frequency. The structure of the
chaotic attractor suggests there might have been grazing of an invariant torus. The
analysis of grazing bifurcations of invariant tori has not yet been done however we
refer to [7, 9, 32] for examples of other systems that have similar properties to those
shown here. The grazing of this torus is an area of future investigation.
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Fig. 4.5. Delay plots for the Poincarė section Σ of a series of forcing frequencies ω as (a)8228.7,
(b)8318.2, (c)8407.6, (d)8497.1, (e)8586.5, (f)8675.9, (g)8765.4, (h)8854.8, (i)8944.3, (j)9033.7
(k)9123.2, (l)9212.6.

5. Conclusion. The main result from this paper is that a nonlinear damper
can introduce undesirable dynamics in an otherwise linear system. The main cause
of such dynamics are the valves (see Figure 2.1). The trajectories of the valves can
significantly affect the response of the whole system. Of particular interest is the effect
of the valves when they impact the valve seats. It has been shown that the system
can undergo qualitatively different dynamics depending on whether the valves impact
or not. At the point where the valves just impact we find a grazing bifurcation. Many
unstable solutions exist on one side of the bifurcation: infinitely many trajectories
where the valve impacts on the valve seat and one trajectory where the valve does
not impact the seat. The two sets of solutions annihilate each other at the grazing
point. We have presented a detailed analysis of the simplest two grazing bifurcations
in this system and argued that the grazing of the period-two orbit is responsible, in
some sense, for the birth of a chaotic attractor. There are three points where chaotic
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Fig. 4.6. Delay plots for the Poincarė section Σ of a series of forcing frequencies ω as (a)9302.0,
(b)9391.5, (c)9480.9, (d)9570.4, (e)9659.8, (f)9749.3, (g)9838.7, (h)9928.1, (i)10018, (j)10107,
(k)10196.

attractors are born. There are two standard grazing bifurcations at ω = 8000 and
9414 and one point where a quasi-periodic attractor is born due to the grazing of a
torus. To the knowledge of the authors this is the first time this kind of bifurcation
has been studied in such a complex system as the damper examined in this paper.

None of this analysis would have been possible without the dedicated numerical
method. A more general continuation algorithm for piecewise-smooth systems would
be desirable to fully analyse the system. A report from SICONOS (SImulation and
COntrol of NOnsmooth dynamical Systems) [3] takes the first steps in this direction.
Of specific interest is the grazing of the quasi-periodic torus and treatment of its
mode-locking. To progress in this area, the discontinuity mappings should be derived
which can become complicated for large systems such as the one studied in this paper.

It is important to understand why non-periodic orbits exist so that they can be
avoided when using the damper in a larger system. For instance a non-periodic motion
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Fig. 4.8. Delay plots for the angle between Q1 and Q2 at ω =9212. Plotting a delay of 9
intersections with a line αn = αn+9 for reference.

of the system’s mass could lead to high vibrations, causing unpredictable fatigue that
would reduce the life of the system. A periodic response from the mass would still
cause vibrations, however these can be more easily predicted, and thus the life of the
structure can be calculated and possibly lengthened.
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Appendix A. Existence conditions of periodic orbits from a grazing

point. A set of conditions have been derived by Nordmark [3, 20] that define the
existence of periodic orbits being created at a grazing point. The state is given by x
and the bifurcation parameter is denoted as µ to apply to (2.14) in this paper.

Here we will summarise the conditions derived by Nordmark in a nontechnical
way and a form that can be directly applied to (2.14). The N -dimensional system
ẋ = f(x, µ), where N = 8, will be used to determine which periodic orbits are created
or destroyed at a grazing bifurcation.

We suppose there is a non-impacting periodic orbit such that there is a Poincaré
mapping of the smooth orbit near x = 0, µ = 0 given as x → f(x, µ) so f(0, 0) = 0.
The Jacobian of the mapping will be

A = Dxf(0, 0),

where Dx is the first derivative with respect to x. The Jacobian calculation is not
straightforward when a system encounters a discontinuity in one of the states and
is discussed in detail in [22]. The first derivative of the system with respect to the
bifurcation parameter at f(0, 0) is denoted as M so

M = Dµf(0, 0).

The discontinuity will occur on a surface defined by the zero of a smooth function h
(where h(0, 0) = 0) which has a negative value leading to a low-velocity impact and
positive values for a non-impacting orbit such that

C = Dxh(0, 0).

A second mapping, g, is introduced to take into account this jump in state at the
surface defined by h given as

g(x, µ) =

{
x, if h(x, µ) ≥ 0,
b(x, y, µ)y + x, if h(x, µ) ≤ 0,

(A.1)

where

y =
√
−h(x, µ),(A.2)

to leading order for an impacting system [19], and b represents the jump in state at
impact and is given by

b =
[

0 0 0 (1 + r) 0 0 0
]T √

2a,

for the grazing of valve 2 in (2.14) where a = dX4

dt
at the grazing point of the grazing

orbit. The quantity b is smooth and is referred to as B about the zero as

B = b(0, 0, 0) 6= 0.

In the generic case a periodic point x of period n can be described by

x = (g ◦ f)n(x, µ)(A.3)

but this can cause problems due to the choice of g and singularities in the deriva-
tive at h = 0. We therefore define a periodic orbit with m impacts as a sequence
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(n1, n2, ..., nm) of n1 − 1 non-impacting iterates followed by a single impact followed
by n2 − 1 non-impacts etc. The total period is therefore given by n =

∑m
i=1 ni. The

aim is to define the existence of a periodic orbit with a given impacting sequence. A
period-one impacting orbit can then be described by n1 only with n1 = 1. The state
and value of y of the system at impact i is denoted as xi and yi respectively so a fixed
point (periodic orbit) is given as x = x1. A non-impacting fixed point of period n
satisfies

x − fn(x, µ) = 0(A.4)

restricted by

h(fk(x, µ), µ) > 0 for 1 ≤ k ≤ n.(A.5)

An impacting sequence defined by the notation above (n1, n2, ..., nm) is given by the
set of equations

x2 − b(fn1(x1, µ), y1, µ)y1 − fn1(x1, µ) = 0

h(fn1(x1, µ)) + y2
1 = 0

...(A.6)

x1 − b(fnm(xm, µ), ym, µ)ym − fnm(xm, µ) = 0

h(fnm(xm, µ)) + y2
m = 0

subject to the condition for non-impacting iterates as (A.5)

h(fk(x, µ), µ) > 0 for 1 ≤ k ≤ ni − 1,(A.7)

since ni represents the impacting iterate, and

yi > 0.(A.8)

This set of equations and conditions define the periodic orbit with a given impact
sequence. The iterate equations (A.6) can be linearised and put into matrix form
together with the linearised definition of the impact surface (A.2).

Now let us consider the conditions (A.7) and (A.8). The direction of the variation
in the bifurcation parameter should be taken into account. To make this clearer let us
consider a small variation in one parameter µ about a fixed point x̃(µ) of the above
system ensuring the condition x̃(0) = 0. This condition holds by the implicit function
theorem if

det(I − A) 6= 0(A.9)

where I is the identity matrix and

x̃(µ) = f(x̃(µ), µ).(A.10)

It will be assumed that the fixed point will cross h = 0 transversally for a change in
µ. The aim is to find a simple expression, expressed in terms of µ, for a perturbation
in µ about the fixed point. The coordinate system can then be changed according
to this change in µ to yield a simplified system of equations and conditions. The
resulting system and conditions from (A.6)-(A.8) will then contain information about
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the direction of the perturbation and can therefore define which side of the grazing
point the solution will exist. The first step is to perturb h as

h(x̃(µ), µ) = h(0, 0) +
d

dµ
[h(x̃(µ), µ)]µ + O(µ2)(A.11)

since h(0, 0) = 0 and expanding we find

h(x̃(µ), µ) =

(
hx

dx̃(µ)

dµ
+ hµ

)
µ + O(µ2).(A.12)

Differentiating (A.10) with respect to µ

dx̃(µ)

dµ
= fx

dx̃(µ)

dµ
+ fµ(A.13)

so

(I − fx)
dx̃(µ)

dµ
= fµ(A.14)

which is used in (A.12) to yield

h(x̃(µ), µ) =
(
hx(I − fx)−1fµ + hµ

)
µ + O(µ2).(A.15)

so

h(x̃(µ), µ) = eµ + O(µ2)(A.16)

where

e = Dµ(h(x̃(µ), µ))(0) = C(I − A)−1M + (Dµh)(0, 0) 6= 0.(A.17)

The system of equations can be summarised in matrix form using

z =
[

x1 y1 · · · xm ym

]T

so (A.6) can be expressed as F (z, µ) = 0 with solution F (0, 0) = 0. The solution z(µ)
from z(0) = 0 is defined uniquely by the implicit function theorem if (DzF )(0, 0) is
nonsingular and (A.7) and (A.8) hold.

As suggested above, the system of equations (A.6)-(A.8) can be rescaled with the
offset from the fixed point as x = x̃(µ) + eµχ, y = eµY . The solution can then be
described as

Z =
[

χ1 Y1 · · · χm Ym

]T
.

A period-k non-impacting sequence as in (A.3) can now be rewritten as

fk(x, µ) = fk(x̃(µ) + eµχ, µ)

which gives, on expansion with (A.10),

fk(x, µ) = fk(x̃(µ), µ) + fk
xeµχ + O(µ2) = x̃(µ) + eµAkχ + O(µ2).(A.18)
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Expressing (A.16) in terms of the new coordinates and the definition of the fixed point
we get

h(fk(x, µ), µ) = h(x̃(µ) + eµAkχ + O(µ2), µ)

so with (A.16)

h(fk(x, µ), µ) = h(x̃(µ), µ) + hxeµAkχ + O(µ2) = eµ + eµCAkχ + O(µ2).(A.19)

Taking the first line of (A.6) with (A.18) and (A.19) with the substitutions x2 =
x̃(µ) + eµχ1 and y1 = eµY1

x̃(µ) + eµχ1 − BeµY1 − (x̃(µ) + eµAkχ1) + O(µ2) = 0

and the second line of (A.6) yields

eµ + eµCAkχ1 + O(µ2) = 0.

Similar expressions for the rest of the impacting sequence can be derived and put into
matrix form. For the impacting sequence (n1, n2, ..., nm) the matrix (DzF )(0, 0) is
defined as the banded structure D(n1,n2,...,nm). For m = 3

D(n1,n2,n3) =




−An1 −B I 0 0 0
CAn1 0 0 0 0 0

0 0 −An2 −B I 0
0 0 CAn2 0 0 0
I 0 0 0 −An3 −B
0 0 0 0 CAn3 0




.(A.20)

The system can then be written as

D(n1,n2,...,nm)Z(µ) =




0
−1
...
0
−1




+ O(µ),(A.21)

with the conditions

sign(eµ)(CAkχi(µ) + 1) + O(µ) > 0 for 1 ≤ k ≤ ni − 1(A.22)

and

sign(eµ)Yi(µ) > 0(A.23)

derived as above for (A.7) and (A.8) respectively and dividing by the modulus of eµ
to preserve the dependence on the sign of eµ.

The set of equations defined by (A.21) can then be solved for Z. A solution with
impacting sequence (n1, n2, ..., nm) exists for small µ for either µ = 0+ or µ = 0−
if (A.22) and (A.23) hold for the solution to (A.21), with conditions det(I − A)6= 0,
e 6= 0 and det(D(n1,...,nm))6= 0. If any expression on the left hand side of (A.22) or
(A.23) are negative then no solution exists for that sequence of impacts.
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The side of the grazing point that these orbits exist is of interest as we wish
to predict the direction of the branches from the bifurcation. As the bifurcation
parameter µ changes across the grazing point, the sign of µ will change. The term e
can be taken to be a constant so the left hand side of the conditions (A.22) and (A.23)
will change sign. This change in sign results in the conditions no longer holding and
so the orbit can only exist on one side of the bifurcation.

The direction of the impacting orbits can be determined by considering the non-
impacting orbits and the solution to the system in (A.21). As an example let us take
the case of a period-one orbit. The system in (A.21) can be written as

(I − A)χ1 − BY1 = 0,

CAχ1 = −1.

Rearranging these equations and converting back into the original coordinates with
y = eµY yields

y1 = − eµ

CA(I − A)−1B

and using the notation for a general period-n orbit

s(n) = CAn(I − An)−1B(A.24)

produces

y = − eµ

s(1)
> 0(A.25)

for a period-one orbit, noting y > 0 as (A.8).
A non-impacting orbit is defined by the condition in (A.5). Using the derived

form of h in (A.16) we can state that for a non-impacting orbit (so h > 0)

h(x, µ) = eµ > 0,

so the sign of the quantity eµ is +1. It follows that if the constant e at or close to the
grazing point is positive then the direction of the non-impacting orbit will be defined
by µ > 0. The converse argument holds for e < 0 so µ < 0.

For the impacting period-one orbit h < 0, so if s(1)< 0 then eµ > 0 for the orbit
to exist, as defined by (A.25). In the example where e is positive, the result indicates
that the period-one impacting orbit will be on the same side as the non-impacting
orbit because µ must be positive.

The above argument can be applied to any given impacting sequence. If all the
conditions in (A.22) and (A.23) are of the same sign and positive for a given impacting
sequence then the orbit exists on the same side of the non-impacting orbit relative to
the grazing point. If the conditions are all of the same sign but negative then the orbit
exists on the opposite side to the non-impacting orbit. In contrast, if the conditions
(A.22) and (A.23) are of both signs for a particular orbit sequence (n1, n2, ..., nm) then
no periodic orbit of that type can be either created or destroyed in the bifurcation.


