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Abstract

This paper outlines several possible method of modelling a passive hydraulic damper
with a bypass tube that is opened by a precompressed relief valve. Initially a simple
algebraic model is derived which is developed into a more computationally complex
model incorporating the dynamics of the internal spring valve and fluid compress-
ibility. Numerical simulations indicate realistic dynamical phenomena and suggest
key design parameters.
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1 Introduction

Vibration dampers are used in many applications such as car shock absorbers
[1], bridge stabilisation [2], helicopters [3][4][5] and earthquake-resistant build-
ings [6][7]. A model is essential if changes are to be investigated without re-
constructing the system. This paper will concentrate on a damper as a stand
alone module within a larger mechanical system. Hence it is assumed that
a simple, time dependent input displacement produces a force. The damper
modelled is essentially a plunger in hydraulic fluid. The plunger has a small
orifice that connects either side through which the fluid flows, as in figure 1.
There is an added complication on the damper studied. When the pressure
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difference between the two sides of the plunger is high enough, a conical valve
opens that allows fluid to flow through an alternative tube as in figure 2. When
this occurs the damper is said to "blow-off . The blow-off valve is connected to
the damper’s casing via a spring. The precompression of the spring against the
alternative ‘bypass tube’ determines the pressure difference at which the valve
will open. The blow-off system is the same for negative pressure differences
with the valve resting against a second bypass tube preventing fluid flowing
freely in the opposite direction. Such a damper is indicative of that used in
applications where the damping of small amplitude or low frequency motion
is most important.

This study has been motivated by the attempt to reproduce some propriotory
test data that shows a hydraulic damper configured as in figures 1 and 2. The
broad features of this data are: hysteresis; delayed response; and chattering
oscillations in the blow-off region. Figure 3 is a qualitative sketch of a typical
input to the system. The plot shows the damper piston’s displacement against
time. The main feature of the sketch is the smoothness of the periodic motion
and the small number of changes in the displacement gradient. From this type
of input we require a force qualitatively similar to that shown in figure 4. The
force against time sketch shows local rapid oscillations at high forces. The
direction of the force does not change in these regions as might be expected
from the displacement gradients suggesting some kind of delayed response in
the output. The hysteresis is more evident in the force against velocity sketch.
The hysteresis results in a minimal response to high frequency changes in input
displacement while allowing a smoother response to the larger low frequency
components.

A dynamic fully parametric model of such a damper is pressing due to the
interations between the spring compression and overall pressure in the tube. As
shown later this can lead to a complex dynamic response. While semi-empirical
models of dampers such as in figure 1 have received attention [8][9][10][11], to
our knowledge the effects of the passive blow-off valve have not been treated
in the literature (although relief valves treated on their own have been shown
to lead to nonlinear [12][13] and chaotic dynamics [14].) The resulting model
can be used to predict the effect of changing the properties of the damper on
the dynamic response. The key features investigated are the sizes of the orifice
and bypass tube along with the stiffness and discharge characteristics of the
spring and valve respectively. In this paper a simple lumped mass parametric
model is derived that incorporates all these effects.

The rest of this paper is outlined as follows. Section 2 describes the modelling
process used by previous researchers to model figure 1 as a simplification of
an automobile shock absorber. Sections 3 and 4 investigate several possible
extensions to the model in section 2 to take into account the blow-off. First
an explicit model is derived to give the force for a given displacement input.



The relief valve and compressibility of the fluid are then considered separately.
A model for the whole system is then derived. Section 5 gives some results
using the different models using indicitive parameter values. There is also a
discussion in section 6 on a possible optimisation technique to optimise the
energy dissipation. Finally section 7 discusses the relative merits of each of
the models.

2 Hydraulic dampers

The two most common types of dampers in widespread use as vibration ab-
sorbers are: passive dampers; and semi-active dampers. Passive dampers such
as hydraulic dampers or elastomeric dampers require no external input to op-
erate and perform in a totally passive way. Active dampers have an external
energy input so that the force response from a given input can be changed to
suit the conditions. This can lead to high energy requirements which is why
semi-active dampers are now becoming more popular. Semi-active dampers
are similar to active dampers but they have input forces that are orders of
magnitude smaller than for active dampers. An analogy can be made with the
fluid orifice damper in figure 1. A passive damper’s response would remain the
same for all time (ignoring wear etc.) whereas a possible semi-active damper
would be able to mechanically change the size of the main orifice so producing
a different response characteristic. To fully understand this type of semi-active
damper it is important to understand the simple passive case so that control
laws can be derived.

It is essential that a parametric model is derived rather than modelling the
dampers simply by their characteristics with transfer functions. While the
transfer function method can produce a simpler and quicker solution, it can
not take into account the physics of the system. Changing the orifice diameter
for example would require the damper to be rebuilt and the model fitted again
to the new test data. This would not be required if a parametric model was
implemented, except for verification.

The passive damper used in many applications is essentially similar to that
of an automobile shock absorber. Work on modelling such systems has been
performed by a number of groups. The resulting equations are all based around
the same basic equation taken from work by Wallaschek [1] and later developed
by Worden, Tomlinson, Surace and co-workers [8][9][10][11] based upon a thesis
by Lang [15] in 1977. Referring to figure 1, an equation for the force provided
by the damper is defined as



F(t) =mij(t) + A[Pi(t) — Pa(t)] + fesign(y(?)),
where  P;(t) = Pressure in chamber i. (1)

The equation states that the force on the piston caused by a given motion y(t)
applied to the damper is given as the sum of the inertia of the body mij(¢), the
force on the piston due to the difference in pressure between the two chambers
A[Py(t) — P»(t)] and the friction due to the piston rubbing against the sides
which is assumed to be a constant force f.. Here A is the cross-sectional area
of the chamber.

The pressure difference [P;(t) — P»(t)] can be attributed to the sum of viscous

frictional losses through the orifice Ap; and head loss at the exit of the orifice
Aph-

Assuming incompressibility, the continuity equation can be used to obtain the
change in volume in the chamber, V/,

V = Ajy. (2)

For small ¢ the flow can be assumed to be laminar. Poisseuille’s equation [16]
can then be used to express V' in terms of the pressure difference Apy between
the two chambers due to viscous losses:

_ md*Ap; (3)
1281n ’

where 7 is the dynamic viscosity, [ is the length of the orifice and d is its
diameter (assumed circular in cross-section).

Combining (2) and (3) yields the following equation for the viscous forces
through the orifice,

doy = s ()i @

o
where A, is the area of the orifice.

The second contribution to pressure loss Apy, is due to the head loss (some-
times called throttle loss) at the exit of the orifice given by

?)2

hy, = =2
L 62g7 (5)



where v, is the velocity of the flow through the constriction. For a sharp
90° exit, ¢ has a value of 0.5 [17]. Conservation of momentum states that
yA = v,A,. Hence

AN T,
ho= o) 500
and so
1 AN L,
Apy, = hrpg = DA (A_> y~(¢)sign(y(t)), (6)

where p is the density of the fluid. The difference in pressure P, — P; is equal
to the loss described in (4) and (6),

[P1(t) — Pa(t)] = Apy + Apa.

The overall equation of motion is therefore given by

F(t) = mij(t) + diy(t) + doy* (t)sign(j (t)) + dasign(y(t)),  (7)

where

A 2
d, =8l <A_o> ,

1 A2
d2—§CP<A—O> A,

d3:fc-

With a purely sinusoidal input, y(¢) = Y sinwt, an algebraic equation is pro-
duced as given by Surace et al [9]:

F(t) = —mYw?sin(wt) + diYw cos(wt) + dyY?w? cos?(wt)sign(cos wt) + dssign(cos wt).

(8)

In [9] this equation was solved using an Euler scheme. There were prob-
lems with this approach as with any numerical scheme applied to a model
with Heaviside nonlinearities. There is therefore a need to develop an explicit
method of simulating the system along with time-step approaches as shown
in section 4.



3 Incorporating the blow-off dynamics

The model can be extended to incorporate more realistic dynamics that re-
sult from the relief valve and blow-off region. As stated in the introduction,
the damper to be studied has a blow-off region where the fluid is allowed
to recirculate through a bypass valve rather than having to flow through the
main orifice in the piston. See figure 2. The valve will open when a pre-set force
(F.rit) is exerted upon it by the flow through the recirculation pipe (F' > F,.;).
This recirculation acts as an alternative orifice. In the simplest possible model
we can treat the damper with the bypass tube open in exactly the same way
as the original orifice but with a different geometry. The area of the orifice
now becomes the area of the bypass tube A, rather than A, since A, << A,.
Hence we use (7) with different coefficients consequent on the motion now
having four different regions:

i low force (F' < F,.;), damper in compression (¢ > 0);
ii high force (F' > F,.;;), damper in compression (g > 0);
iii low force (F' < F..;), damper in rebound (¢ < 0); and
iv high force (F > F..;;), damper in rebound (9 < 0).

Four seperate possibilities are considered in the next two sections. These are:
more careful treatment of the critical force F,,;;; backlash in section 4.1; change
in flow due to the spring valve in section 4.2; and compressibility in section
4.3. In section 4.4 these are pulled together into a single comprehensive model.

In this section the system is considered as a set of explicit formulae rather
than using a timestepping technique. The aim is to predict F' for a given
input displacement y = Y sin(wt).

3.1 Constant pressure model

From section 2 it is not clear what the value of d; should be when the valve
is open. The value can be calculated in the simplest case using (8) if the
critical force is known to be exceeded through the motion. However the input
to the damper will not always be so simple. Physical reasoning needs to be
applied if the parameters are to be chosen correctly. This section outlines a
simplifying assumption that can be made to model the transition from low
force (F' > F.;) when the valve is closed, to high (F < F,;) force when
the relief valve is open. A physical explanation for the motion in the blow-off
region will be discussed. The overall equation of motion, ignoring the transition
region, is given in (9).



mij(t) + digt) + dS g2 ()sign(y(t)) + d§sign((2)) if [F| < Foe
mij(t) + dPy(t) + dS g2 (¢)sign(y(1)) + dS sign(y(t)) if |F| > Furar

(9)

The only unknown parameter in (9) is d? 1t is calculated to give equivalent

results to those observed. Problems may arise if the selection is incorrect since
the fitting of physical parameters to each coefficient dz(] ) is nontrivial.

The size of the main chambers (chamber 1 and chamber 2 in figures 1 and
2) can be assumed to be large compared to the size of the orifice and bypass
tube. An analogous model can be thought of as a barrier separating chambers
1 and 2 with three holes in, the larger blocked with the spring loaded valves
(one for each direction of flow) as in figure 5.

At lower pressures all the flow will pass through the piston orifice as the valve
will remain closed due to the spring precompression. This will be the case
up to the critical force F.;. Above this force as the flow rate increases, a
valve will open allowing some of the fluid to flow through the bypass tube. If
chamber 1 can be thought of as having a large volume, the change in pressure
in chamber 1 due to the additional fluid flowing through the bypass tube will
be negligible. This means that the pressure differential across the piston orifice
will remain approximately constant for all forces greater than the critical force,
so the orifice flow will remain constant. This implies that the contribution to
the force due to the piston orifice remains the same and equal to the critical
force F..;. The extra flow through the bypass tube will cause an additional
force which can be added to F,;.

The overall equation now becomes, referring to figure 6,

mij(t) + d{V5(t) + ds 52 (¢)sign((1)) + di sign(y(t)) if |F| < Fopu

Fopit +mij(t) + d® (1) = eriz) if |F| > Fopig,
(10)



2
(1) _ A )
4N = 8pr ( )

1 AN?
& = cp (—) A,

2 A,
d:(il) - fc:
A 2
d§2) = 8lb777T (A_b> ;

to = calculated time of critical force,
[y =length of bypass tube,
Ay = cross-sectional area of bypass tube,

if it is assumed that the bypass orifice is large enough to avoid head losses at
the exit. Computationally this may cause a problem as 7..;; will need to be
calculated for each blow-off. Alternatively, an exact value for the non-physical

d?) in (9) (see figure 6) can be calculated as the critical force and time is

known for the first intersection. The equation to calculate dgf) for a sinusoidal
input will be

dgf) = F...; + mYuw? sin(wterit) — de)wY cos(Wterit),

where t.,;; is calculated at the intersection of the low force trajectory and the
critical force at 7.4

3.2 Equivalent velocity model

It would be simpler to analyse the system if the whole cycle for a given input
displacement could be described by the flow through the main orifice. This
section is an extension to section 3.1 and aims to calculate this effective flow
through the orifice assuming a smooth transition and taking into account the
blow-off region.

Ignoring compressibility, the flow due to the motion of the piston will be
completely shared in some proportion between flow through the orifice (Q,)
and flow via the bypass tube (Qp). This can be expressed as

Qo + Qb = Ay (11)

The head loss due to the two flows (and so the corresponding pressure differ-
ence) must be equal as discussed in [18] with applications to pipe networks.
As a simple example, this implies that a wider pipe would need more flow
through it to produce the same head loss as a similar but narrower pipe. The



loss coefficients would define the ratio of flow rate. The idea can be applied to
(9) with reference to figure 6.

The case shown in figure 6 takes a velocity of 7, giving a pressure difference
P;. For the head loss to be the same for both routes (orifice and bypass),
and hence the pressure difference, the equivalent velocity for the main orifice
would be given by .. This is calculated using the equation for the main orifice
(F < F,;) from (9), ignoring the inertia and friction of the piston. The flow
through the bypass tube will therefore given by

Qv = A(Y(t) — (1))

There are now two equations for the pressure P; or force

PiA=dMge(t) + dS e (1) sign(ge(t)),
PLA=dPy(t) + dPy(t) sign(§(t)) + dsign(y(2)),

which can be equated and solved to give an equation for the effective velocity
through the orifice for a given piston velocity, 4(¢), above the critical velocity,

Yerit, S

- iy O \/ ()" + 4d [d® + dP5()3(1)] + dPsign((1))] sign(3(1))

e
2dMsign (5 (t))

b

since sign(y(t)) = sign(ye(t)). The system can now be fully described by the
flow through the orifice.

4 Modelling further effects
4.1 Backlash

An additional backlash term can also be incorporated into the main damper
system [1] due to loose connections of the damper. A suggested model is given
in (12), where ¢ is the amplitude of oscillation.



t)—y<d and ¢ <0, or
py=myit {77 !
yt)+9<d and §>0

F(t)=mij(t) + dyy(t) + dot*(t)sign(y(t)) + dssign(y(t)), otherwise. (12)

A second point of note is the negligible contribution from the Coulomb friction
term f, in (1). There is no indication of Coulomb friction in the available test
data. The backlash may hide this so further experimentation needs to be
carried out. The rest of this paper will assume there is no contribution from
backlash or Coulomb friction. Hence dél) = 0 in what follows.

4.2 Change in flow due to relief valve

Section 3.2 can be extended to include the dynamics of the spring-loaded
relief valve. There are three parts in the system that can produce a pressure
differential (again ignoring compressibility):

(a) flow through piston orifice;
(b) flow through bypass tube; and
(c) flow past the valve.

The pressure difference between the two chambers must be the same as dis-
cussed in section 3.2. The pressure loss due to the orifice must therefore be
the same as the loss due to the bypass tube and valve combined, so

AP = AP, + AP, (13)

where AP, is the pressure loss due to flow past the valve and AP, is the
pressure loss due to flow through the bypass tube. Hayashi et al [14] used (14)
to define the flow, @),, past a simple valve similar to the one in figure 2 with
a pressure loss AP, and a valve displacement X from the valve seat.

B v X ) 2AP,
Qv = Cpo <71 n 7X> Xrd,sin(a) P (14)

Cpo and vy are experimentally determined, d, is the diameter of the valve and
« is the half angle of the valve. The pressure difference due to flow through
the main orifice can be adapted from (7) to give the pressure loss in terms of
flow rates

10



AP:D1Q0+D2Q0|QO|7 (15)

where

128In
D, =—-— 16
1 Td? ) ( )
from (3) and
_

from (5). Similarly for the pressure loss due to the flow through the bypass
tube

API; - Ble + B2Qv|Qv|: (18)

where By, By are as Dy, Dy with the bypass tube dimensions, and @, = @,
in the incompressible case.

Using (11), (13), (14), (15) and (18) with the substitution

2

_ X in(a), /2
R(X) = C), <1 " 7X> Xrd,sin(a) p

yields

Qu = R(X)\/Di (A — Qu) + Da(Ah — Q)| AY — Qu| — B1Qu — BaQu|Qul,

SO

Q, = l—R(X)Z(Dl + 2Dy A,y + By)

£ \/[R(X)2(Dy + 2Dy Ay + B1)]” + 4(1 — R(X)2(Ds — By))(R(X)2(D1 Ay + D(A,)2))

/2(1 — R(X)*(Dy — By)).
(19)

11



The solution to this, @, substituted back into (14) produces the overall equa-
tion for the pressure difference across the valve as a function of piston velocity
and valve displacement given by

so then

AP, = [(—R(X)(D1 + 249D, + By)

+/R(X)(Dy + 249D, + By)? + 4(1 — R(X)2(D; — By))(D1 Aj + DQ(AQ)Q))

/2 [1 = R(X)%(D; - BQ)H 2.

(20)
The force on the valve F),, cross sectional area A,, will be
F, = A,AP,, (21)
which can be substituted into the equation of motion for the valve (22)
myX + 06X + k(X + X,) = F,, (22)

with the condition

) = (X,X) if X >0,
~ 1(0,0)  otherwise,

where m,, is the effective mass of the valve and spring, ¢ is the damping
constant, k is the linear spring stiffness and X, is the precompressed offset of
the spring. The solution, X (¢), to the differential equation is put into (19) to
yield @, and hence @, from (11). The force on the piston is then given by
(15) multiplied by A, as in (1) without Coulomb friction or inertia.

12



4.3 Compressibility

An extension to the basic model seen in (1) would be to include the effect of the
compressibility of the hydraulic fluid. Lang [15] also included the expansion of
the damper casing as a contributing factor, however this will not be considered.
The analysis below mirrors closely that of Worden and Tomlinson [8][9][10].

From conservation of mass (m) [17], where V is the volume of fluid,

m = pV,

so differentiation gives

dm = pdV + Vdp,

and as dm = 0 we get

pdV = —=Vdp.

Let’s assume p(p) and V(p) so therefore

ldp  1aV

pdp  Vidp’

From this the compressibility of the fluid is defined to be

1dV
p=—cD
V dp
Rearranging using the chain rule gives
dv dp
— = -0V—. 23
dt P dt (23)

The rate of change of volume in chamber ¢ is the difference between the volume
rate displaced by the piston’s motion (A4;9) and the actual volume rate of
fluid moving from one chamber to the other (V). If this value is zero then this
suggests the fluid has not been compressed. Equation (23) can be used with
this to give the rate of change of pressure in each chamber as

13



dpy _ Avj(t) = V(#)

o BAD) , (24a)
dpy  Asy(t) — V(1)
PR A r (24b)

Two assumptions can now be made to make the formulation of an overall
equation easier to find. Firstly, let A; = Ay = A as with all previous analysis
(i.e. a symmetric piston). Secondly we can assume that the volume of the fluid
in each chamber, V;, is large in comparison its change in volume (relatively
small damping stroke). If this is the case then Vi(t) = (Vi(t) = V where
V is the average volume of chamber 1 and ¢ is some constant to take into
account the different sizes of chambers. This is different from previous studies.
Equation (24) can then be simplified to show

dpy _ 1dps
dt ¢ dt’
SO
dp: dps
— 4+ —=0
Cdt T ’
giving
(p1 + ps = constant, (25)

so a convenient choice of variable to describe both pressures is

b1 — P2 = %, (26)

where z is the thermodynamic variable [10]. If z is known, p; can be calculated
using (25) and (26). Using this and (24) gives

() = T - P22 L () - V() 27)

Equation (7) states that that the difference in pressure between the two cham-
ber can be attributed to the viscous losses through the orifice and the head
loss at the entrance to the orifice as in section 4.2. For compressible flow the

14



pressure difference needs to be in terms of volume flow rates to give a quadratic
expression in terms of V(¢):

2(t) = DV (t) + DoV (t)%sign(V (1)), (28)

where Dy and Dy are as (16) and (17) respectively. This can be solved yielding

i) = —Dy +\/D? + 4Dyz(t)sign(V (1)) )
N 2D25ign(V(t)) '

It can be assumed that sign(V) = sign(z) since there cannot be flow in the
opposite direction to the pressure gradient for a uniform pipe. From this as-
sumption

sign(V)z =sign(V)|z|sign(z), so

sign(V)z=+|z|. (30)

(29) and (30) combine to produce

—Dy % \/D} + 4Dy 2(1))|

7(t) = sign(=(1) o (31)
(31) can be simplified for the two cases z < 0 and z > 0.
case (i) 2 <0
Equation (31) becomes
o DF /D3 + 4D 2(1)]
B 2D ‘
Since Dy > 0 and Dy > 0,
2D,V = Dy —\/D? + 4D,|2(t)] <0 (32a)
2D,V = Dy +/D? + 4D,|2(t)] >0 (32b)

and V < 0, only (32a) can be true.

15



case (i) z >0

In a similar way to case 7 ,

2D,V = —D; +/D} + 4Dy[2(t)] >0 (33a)
2D,V = —Dy —/D} + 4Dy|2(t)] <0 (33b)

so only (33a) can be true.

The two cases can be combined with (27) to give

. 1+¢ . . 1+ ¢ (D1 — /D3 +4D,|2(t)|
Z(t) = —=Ay(t) + sign(z) —= 34
(1) = o A00) g()wv( s (9
The solution of the equations are then put into
mj+ Az=F (35)

to give the overall force produced by the damper.

4.4 Overall dimensionless model

It is now possible to combine sections 4.2 and 4.3 to give an overall set of
equations for the damper system.

The motion of the valve will have the same general form as in section 4.2 (22).
A simplification can be made to allow a simply coupled equation between the
valve motion and the compressibility of the fluid. Section 3.1 argued that the
losses through the bypass tube are essentially linear due to the relatively large
diameter of the bypass tube compared to the main orifice. This argument can
be taken one step further. The linear losses in the bypass tube can be assumed
to be negligible compared to the losses due to flow through the main orifice
and the losses due to flow past the relief valve from section 4.2. Using this
simplification, the pressure loss due to the orifice must be the same as the
pressure loss due to the relief valve alone. The force on the valve is therefore
from the difference in pressure between the two chambers rather than having
to incorporate the difference in pressure due to the bypass tube. The equation
of motion for the valve becomes

16



myX +0X + k(X + X,) = Az,

where z is the pressure difference between the chambers as in section 4.3.

The compressibility equation (27) can be modified to include the flow past the
relief valve when the valve is open. The rate of change in volume of a chamber
is still the difference in volume displaced by the piston (Ay) and the actual
volume flowing between chambers. Now the volume flowing between chambers
is the sum of the flow through the orifice and the flow through the bypass tube
(V + @y). The additional compressibility effects within the bypass tube can
be ignored as the volume in the tube is small compared to the volume of the
chambers. The general compressibility equation now becomes

() = —= (A49() = V(1) - Qu(t)) -

The expression for V will be the same as before

. —Dy + /D3 + 4Dy 2(1))|
V = sign(z) 5D, :

and the equation for flow past a valve will remain the same (14) with AP, = 2.

The system can now be summarised as a set of three differential equations
where F,.;; is the force at which the valve opens. For the purposes of this
paper it has been assumed that the damper system is symmetric for compres-
sion and rebound. This means the valve properties such as their stiffness, k,
precompression, X., and dimensions are the same for both valves. This simpli-
fication results in a reduction in the number of equations required. The damper
can be thought of as having just one valve since the case of both valves being
open at the same time is not observed in practice since the forcing frequencies
are too low. The valve will act as a bypass route for both compressive and
rebound strokes.

case (i) A,z > Fuy (valve open)

—~

F(t) = Az(1))/m,
2 (0) = 6X(1) = (X (1) + X))/,

gt) =
X)) =

S

2D>

<

At = 58400 - sign((0) (FEEVGEED) — sign((0) ROY, 0/ [=(0)
(

36)
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where

2

1A >X(t)7rdvsin(a) 2

1+~vX(%)

R(X,t) = Cy < ;

case (ii) Ayz < Fuyy (valve closed)

(1) = (F(t) = Az(1))/m,
X(t) =0,(X(1),X())=(0,0), (37)
A0 = 5 [0 - sign(x(0) (P20 |

BV 2D,

The system can be nondimensionalised using

t="Tr
F(t) = fG(7)
2(t) = €Z(7)
y(t) = vY ()
X(t) =hH(T)

where 7, G, Z, Y, H are nondimensionalised time, force, pressure, piston
displacement and spring deflection respectively and ’ is the derivative with re-
spect to 7. An assumption has been made that the contribution to the overall
force due to the inertia of the piston is minimal. The maximum acceleration
achieved in a cycle is of the order of 25 m/s? which is several orders of magni-
tude less than the force generated by the damper. An illustration of this can
be seen in figure 7. The two cases of no inertia and a large piston mass of 10kg
are almost identical with the maximum difference between the two cases of
0.8%. The negligable contribution of the piston inertia means the first force
equation in (36) and (37) becomes

F(t) = Az(t). (38)

The resulting nondimensionalised system can now be expressed as

case (i) Z > Zeir (valve open)
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G(r) =Z(r),
H'(t) =Z(1)—cH' (1) — eoH(T) + ¢35, 2
Z'(7)  =Y'(r) —sign(Z(r) [-1+ /1 +12(7)| + e (H255) /12(0)]]

(39)

case (ii) 7 < Zeiy (valve closed)

G(r) =Z(7),
H"(t) =0,(H'(r),H(r)) = (0,0), (40)
Z'(r)  =Y'(r) —sign(Z(r)) [-1+/1+2(7)]].

The corresponding dimensionless parameters are given by

2 2
DAV  A,DAV)? T
YT 8D,A = 64Dym, Ty
kT? ET?X, 2T Cpoyh?md, sin(a)/2€
C2va, C3 = mah Cq = §ﬁv\/ﬁ )
cs = vh.

The values taken for these parameters are given in table 1. T is the nondi-
mensionalising parameter for time, f for the force generated by the damper, &
for the pressure diference, v for input displacement and h for spring displace-
ment. The other parameters are nondimensional combinations of the original
physical constants. We can change these physical constants and directly link
the change to the new dimensionless parameters. For example key properties
for the damper will be the compressibility 5 and orifice diameter d. Changes
in these values will not necessarily lead to an obvious change in the equations
as before. Doubling the value of 5 will double T" and v, increase h by a factor
of 4 and halve ¢4. Any changes in the dimensionless parameters have to be
linked back to the physical properties if any information is to be gained from
the results.
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5 Dynamic response

The proposed models can be qualitatively compared to each other. They can
also be uesd to investigate changes in the parameters which are directly linked
to the physical properties of the damper. For example a change in the viscosity
of the hydraulic fluid will linearly change d; in (7). We will look at each
modelling technique in turn and present results for each.

5.1 Explicit model

In the first part of this section two simplifications will be made on the algebraic
model (8) so that the fundamental dynamics of the system can be investigated.
The first assumption is that the displacement input is sinusoidal with equation
y(t) = sin(t), so Y = w = 1. The second simplification is that the inertia of
the piston is negligable compared to the maximum force produced by the
damper so set m = 0 in (7) and (8). The value of d? is calculated using a
Newton-Raphson scheme and substituted into the system equation to give a
smooth transition from low to high force. Figure 8 gives an idea of the effects
of parameter changes on the force-velocity profile.

The reference plot in figure 8 is the solid line with the parameter values listed.
It has a quadratic profile with a blow-off force of 0.5N. Many dampers are
design to be linear devices (i.e. F'(t) = Cy(t)). This is achieved by changing
the way the fluid passes through the piston. Many examples of this are used in
civil engineering structures to combat earthquake vibrations in tall buildings
[19]. A similar damper can be modelled by setting dgl) to zero as in figure 8,
shown by the dotted line. The force against velocity graph is now linear for
both regions (high and low forces).

The effect of changing the critical force can be seen as the — + — line. This is
achieved by adjusting the relief valve so that it opens at a lower force (decrease
X, as discussed in section 4.2). If this is the only parameter that has changed,
the system will be in the blow-off region for longer. The maximum force will
be less, hence less energy dissipated for a given sinusoidal input.

As suggested in the introduction to section 5 a change in dgl) will change the
response as shown on the — ¢ — line. The linear part of the low force equation
has doubled so the force reaches the critical value at a lower velocity. This
implies a greater energy dissipation as discussed in section 6.

When incorporating the extensions to the algebraic model, the general large-
scale dynamics of the system will remain the same. The only difference between
the model discussed in section 2 and the models in section 3 is the transition
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region from high to low force. There is however no significant change in the
overall dynamics. The current algebraic model can be qualitatively compared
with the later models using the same input displacement curve given in (41)
as plotted in figure 9. The input was chosen as it displays both high and low
frequency characteristics as in figure 3 which is typical of many applications.

y(t) = 2.5cos(30t) + 4sin(30t) + 0.25 cos(60t) + 5sin(60¢) + 0.9 cos(90¢) — 0.3 sin(90¢)
+ 0.4 cos(120¢) + 0.2 sin(120¢) + 0.05 cos(150t) — 0.3 sin(150t).
(41)

Using the displacement in (41) the simple algebraic model (7) can be applied.
The resulting force can be seen in figure 10. It is clear that the model does
not sufficiently capture the required dynamics. The system is too responsive
to high frequency changes in velocity in the force vs time plot compared to
the observations summarised in figure 4. Furthermore the results do not show
any hysteresis in the force vs velocity plot.

5.2 Time-stepping approach

Since the simple algebraic model does not display the required characteristics,
there is no need to investigate the effects of the extensions to the model in
section 3. Instead focus turn to the more accurate differential equation model
derived in sections 4.2, 4.3 and 4.4, which were solved using MATLAB ODE45
[20].

The aim of the time-stepping approach was to produce a more realistic model
of the damper system incorporating the spring valve and compressibility. This
section is therefore aimed at trying to find the set of parameters that best
describe the response shown in figure 4. Unless stated otherwise the parameter
values used are listed in table 1. It should be stated that these values are
purely indicative rather than fit to any supplied physical dimensions and the
valves were symmetric as derived in section 4.4. Nevertheless, the observed
behaviour was found to be typical of that at other parameter values. The
input displacement used is the nondimensionalised form of (41).

5.2.1 Compressibility

The effect of compressibility is to allow for a dependence upon the history of
the motion. This produces hysteretic effects. The effect of changing the damp-
ing parameter J using (34) and (35) can be seen in figure 11. The values used
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in this graph are the same as those used in [10] with the additional parameter
¢ set to 1. The higher the value of 3, the higher the hysteretic effect. The
graph also illustrates the effect of having different coefficient values in com-
pression and rebound. The coefficient values when in compression (negative
velocity) are lower than for rebound, producing a shallower gradient on the
force-velocity graph. Consequently, the relative effect of the compressibility
of the fluid is reduced. In the limit, a high value of § will produce a force
proportional to displacement alone. A very low [ produces a force that is
proportional to velocity as in section 2.

The effect of fluid compressibility can now be investigated using (39) and
(40). The general effect of compressibility can be seen in figure 12 for § =
1.9x107?. The values in table 1 are for this value of 3. This value was taken
as it is typical of values used in [8][9][10]. The system shows many of the
characteristics displayed in figure 4 with a delayed response to rapid changes
in velocity and hystersis in plot (b). There are three main differences between
the explicit model and the extended time-stepping model. The explicit model
shown in figure 10 is much more responsive to changes in velocity. Figure
12 does not respond so quickly as displayed in the large negative force region.
This is very similar to the required characteristics in figure 4. The second point
to note is the introduction of hystersis into the force-velocity plot in direct
contrast to plot (b) in figure 10. The gradients of the system are qualitatively
the same indicating that compressibility does not affect the broad damping
characteristics as the force is still proportional to velocity. Lastly the system
now takes into account the dynamics of the spring. This can be seen in plot
(a) of figure 12 as the trajectory passes the critical force around G' = +2. The
influence of the spring valve is clearer in plot (b). Oscillations can be seen as
the trajectory follows the blow-off gradient. The oscillations are clearer than
for plot (a) as the velocity is increasing by a large amount in the blow-off
region so extending the oscillations of the spring

The value taken for [ is of great importance to the dynamics of the system. As
suggested earlier in this section a value that is too large will produce a force
that is largely proportional to displacement whereas an almost incompressible
fluid will produce a force proportional to velocity similar to the explicit model.
Figures 13 and 14 illustrates the case of high compressibility (3 = 10x107?)
and low compressibility (8 = 0.1x107?) respectively. In the limiting case of a
non-compressible fluid the force will be a function of input velocity alone as in
section 2. In figure 14 there is little hystersis in the force-velocity graph (b).
The valve is also open for most of the period as seen in the valve displacement
vs time plot (d). The induced force oscillations are also more rapid in plot (b)
and occur for a shorter time than in figure 12 for higher compressibility. The
overall dynamics are very similar to figure 10, in particular the force against
velocity plots. This is in direct contrast to the case of high compressibility in
figure 13. The system now has a considerable amount of history dependence
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introducing hysteresis into the force-velocity profile in plot (b). The system
spends less time in the blow-off region since the valve remains closed inbe-
tween the main force peaks. The influence of the dynamics of the spring valve
is also reduced when compared to figures 12 and 14 and the general shape
of the force vs time plot in plot (a) of figure 13 is approaching that of the
input displacement in figure 9 as expected. It is useful to note that the max-
imum force, flows and spring displacements are all approximately the same
for both high and low compressibility. The main difference between the two
cases occurs in the low force region as the system remains here for longer if
the compressibility is higher.

Figure 12 is clearly the better model when comparing the algbraic model to the
time-stepping approach. It has been shown that the selection of 3 is important.
The value used to produce table 1 and figure 12 uses a value within the limits
set by Surace et al for hydraulic fluid used in automobile shock absorbers.
The resulting force is qualitatively similar to the required profile suggesting
the modelling technique is valid.

5.2.2  Orifice diameter

The physical properties will have a large influence over the dynamics of the
system. Intuitively one of the most important factors will be the size of the
main orifice in the piston. Figures 15 and 16 illustrate the case of the diameter
of the orifice increased by 500% and reduced to 20% respectively. Changing the
value of the orifice diameter, d, will change all of the dimensionless parameters
in (39) and (40) so no direct link can be made to the calculations. The original
system in (36) and (37) indicates that the orifice diameter affects the pressure
loss due to the orifice (D; and Dy) only. This is useful to note when trying to
understand the dynamics.

The orifice diameter dramatically affects the output force profile for the same
input displacement. A larger orifice as in figure 15 has a shallower force-velocity
gradient which produces vastly different dynamics since the valve is open for
a shorter period of the cycle. This makes sense since the losses due to the
orifice will be less so there will be less pressure to open the valve for a given
piston velocity. There is also less hysteresis displayed in panel (b) although the
oscillations due to the spring are still evident. While the compressibility means
the system is not too responsive to changes in velocity, the forces generated
for a large proportion of the motion are too small. This is again due to the
reduced pressure difference from the orifice.

Decreasing the size of the orifice by a factor of 5 in figure 16 does not have

such a large effect on the system when compared to the reference model in
figure 12 since the dynamics are now dominated by the case when the valve
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is open. Due to this the only noticable difference when decreasing the orifice
diameter will be to reach the critical force sooner. In the case shown in figure
12 the critical force is reached quickly at which point the valve will open.
While the valve is open the losses will be dominated by the flow past the valve
as illustrated in plot (d). The pressure losses due to the orifice will remain
approximately at the same level. By decreasing the size of the orifice there
will be more flow past the valve. Since the force vs velocity profile is shallow
for this blow-off section the effect on the force will be minimal.

5.2.3 Instability issues

As with many dynamical systems there are regions of parameter space that can
cause the system to become unstable or cause the force to oscillate rapidly with
a large amplitude. In the damper modelled the most likely module to become
unstable is the spring valve system. Under certain conditions the spring can
undergo high frequency oscillations as displayed in figure 17 where the spring
damping has been reduced by a factor of % from previously with a simple
sinusoidal input of 1 x 1073 sin(¢). The rapid motion causes oscillations in the
force generated as illustrated in (a). There are two time-scales exhibited for
the given input profile: the large time period of the input motion; and the
small time-scale spring oscillations.

There is a great deal of scope for investigation into these instabilities and
when they occur. Factors such as the flow characteristics of the valve (values
of v and C,,) and the spring stiffness constant (k) cause similar oscillations.
In extreme cases the numerical scheme cannot solve.

6 Optimisation

The aim of this section is to outline a method to test whether the current set
up of the damper is optimal. To optimise a system there needs to be some
basis to compare one set up from another. A typical controller for a damper
system maximises the energy dissipation that results from the motion of the
damper. If the modelled damper is taken the dimensions are set. This means
the coefficients cannot be changed. The only degree of freedom available is the
maximum allowable force. The effect of the spring dynamics are not consid-
ered here as it has no influence over the maximum force obtained. Similarly
compressibility is also ignored for now.

The general equation for energy dissipation is given by force multiplied by
displacement for a full cycle of operation,
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7{ Fdy (42)

where F' is the force and y is the displacement of the damper piston as before.

It is clear from (42) that the maximum energy would be dissipated if there
was a large maximum force, or a large displacement. However, both of these
are restricted. If there was a large resistive force from the damper there would
be little motion from the piston so producing low dissipation. Conversely,
if the piston was allowed to move freely there would be little resistance to
motion (low force) and so low dissipation. This coupling of maximum force
and maximum displacement suggests that there is an optimum value for each.
As a first assumption, the relationship between maximum force (F,q,) and
maximum displacement (Y,,q.) is given by

Foo— S (43)

ymam

where ¢ is a constant taken as 1 for illustration.

The energy dissipated in (42) corresponds to 4 times the area under the force-
displacement graph in figure 18. With a sinusoidal input however, analysis is
simpler if calculated in the time domain. Equation (42) can be rewritten as

= dy
W :/ %Y a
d 0 <dt>

W, =4 / ¥ Pyt (44)
0

for a symmetric set of equations (i.e. coefficients are the same for compression
and rebound), where F is given by the linearised

(45)

_ dgl)y lf |F| < FC’/‘ita
Ft)=1 . @ .
di”y+dy’ i [F| > Foay,

where dgf) is calculated to give a smooth transition from low to high force,
and

y = Y sin(wt).

If the maximum velocity (Vi) can be calculated (Yw) then (45) can be
solved for velocity using the point (Va0 Finaz) as

25



dMg if |[F| < F
F(t):{ 1 y 1 | |< ty (46)

d§2)y + Fmam - d?) Vmam lf |F| > Fcrz'ta

Equation (46) can then be used to find the intersection point as a function of
Frnoe and V4, as the linearised system produces a straight line graph in the
force-velocity plane. The time of intersection (..;;) is then given as

1 Fmam - d(2)vmam
terit = —Aarccos (1)1 ONE (47)
w Vmam (dl - dl )

Using (43), (46) and (47), the integral in (44) can now be given as

AT O £ _ 4@
Wy =4 di”Yw cos(wt) + v di”Yw | Ywcos(wt)| dt
0

+4 / a0 (Yw cos(wt)?] dt,
v
1

£ d(Q)Yw
where ¥ = — arccos Y ! ) .

w Yo(d - d

The equations are valid for

1
o\ 40

as 0 < Fop < Frae.

With this information, a graph can be plotted for any set of parameters. An
example is shown in figure 19. The optimal value for the maximum displace-
ment is 1.228 m corresponding to 0.9550 Nm of energy dissipated. The critical
force for this setup is calculated using

Fou = Ywcos(wteit)

where .. is calculated in (47) giving F.;; a value of 0.72 N with F,,, being
0.81 N from (43). F,.;; is 89% of the maximum force.

The process above illustrates that an optimum critical force can be found.

This corresponds to a stiffness of the relief valve spring. This could be used in
the future if the spring valve was replaced by a semi-active servovalve.
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7 Conclusion

The main result from this paper is that a damper with relief valve can be
modelled with a parametrised system of equations. There are benefits and
disadvantages associated with all the proposed models.

Section 2 summarised previous work on a simplified shock absorber. It is clear
where the force is coming from and how the various parameters can affect the
force profile. The model is also explicit and so requires negligable computation
time for a given input. There are two main disadvantages however. The first
is the unclear selection of dgz) in the blow-off region, hence the need for the
models described by (9) and (10) without the valves and (20), (21) and (22)
with the valve. The second reason for not using the model is the rapid response
to changes in input velocity. The model does not incorporate any hysteresis
or delay for rapid changes in velocity. Tests suggest that there is a need for
some kind of delay as in (34) and (35).

There are two approaches to address the issue of the transition from low
to high forces: modelling the system without a dynamic relief valve as in
(9) and (10); or including the relief valve as a system state with (20), (21)
and (22). The first approach assumes that the relief valve is either open or
closed and makes modelling assumptions to get from the valve always closed
to always open. While this approach gives qualitatively more realistic results,
there is no formal justification for the valve assumption. The second method
incorporates the additional head loss due to the relief valve. The flow is then
shared in some proportion between the valve and the main orifice. Again this
gives good results and has the benefit of a physically justifiable basis. However
as with (7), a major problem with both models is the lack of delay.

Incorporating the compressibility effects of the hydraulic fluid produces (34)
and (35). This approach leads to a delay in the system’s response to changes
in velocity. Equations (39) and (40) combine all of the new effects introduced
into a single nondimensional model. The basic compressibility model is used
with the full relief valve model. This system gives qualitatively correct results
for the whole working cycle. The only disadvantages are the complexity of
the model and the fact that it must now be solved by time-stepping. For
the purpose of this report a 4th order Runge-Kutte scheme was implemented
which yielded repeatable results. The final combined model is clearly the best
option as it incorporates all the required dynamics of the system including
the motion of the spring valve and a form of hysteresis. We believe we now
have a parametric model that is fully able to capture these results (see figure
12) and more importantly enables the designer to consider optimisation and
parameter studies. The sketch in figure 4 displays the main characteristics of
the damper to be modelled in this paper. This is based on test results which
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were not conducted by the authors and for which no quantitative results were
available.

The final model can be used in three situations:

i simulating the resulting force from a given displacement input;
ii simulating the motion of the piston from a given force input; and
iii simulating the damper as part of a large coupled system with force
linked to displacement.

This paper focused on the first case. The parameters calculated for this situa-
tion can be used to calibrate the model for the other two uses. The effect the
complex motion of the damper may have on the entire system dynamics will
be taken up in future work.

In section 6 the possible optimisation of the damper system to increase the
energy dissipated was considered. The process made simplifying assumptions
about the input profile and the effects of the spring valve and compressibility.
Nevertheless, the technique employed produced a solution that can be used
to compare configurations. The parameters used have direct links to the di-
mensions and properties of the damper to allow immediate changes to the
system.

There are several factors that have not been taken into account when produc-
ing the model. These include:

i backlash (not used but discussed in (12));
ii the compressibility of the damper casing, discussed in [8];
iii impact dynamics of the spring valve on the valve seat;
iv the issue of cavitation between high and low pressure regions (for-
mation of bubbles); and
v the dependence of viscosity on temperature.

Backlash would be the easiest to model as in section 4.1. The other factors are
not so straightforward and are problems to be addressed in future work. The
temperature issue will arguably give the largest effect when trying to produce
an accurate model. The oil used in a typical hydraulic component is MIL-
H-5606 standard hydraulic fluid. An approximate relationship for the change
in viscosity over a range of temperatures can be seen in (48) from reference
[21], where 7 is the viscosity and T is the absolute temperature. A, B and
S are constants to be determined. By curve-fitting using data from Fisher
Regulators, S = 1270, A = 5x10'2 and B = 16.5.

1=4(g) (48)



Example values are n=16¢P for 38°C and n=>5.7cP for 93°C. This is a large
difference which should not be ignored as the dynamics of (7) are strongly
dependent upon the viscosity. A higher temperature implies a lower force-
velocity gradient as the fluid is less viscous. Clearly such effects are likely to
have significe the start up of mechanical devices such as in automotive and
aerospace applications, where the characteristics of the damper are likely to
be widely different than at the final operating temperature.
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Fig 1: A simplified model of a damper.

Fig 2: Blow-off valve in damper.

Fig 3: A sketch of a typical input displacement against time.

Fig 4: A sketch of the required force output against time and velocity.

Fig 5: Analogous model of damper.

Fig 6: Simplified equivilent head loss for (9). Note the construction of the
fictitious constant d?’.

Fig 7: Effect of including inertia of piston. Magnified region at maximum ac-
celeration.

Fig 8: Effect of changing parameter values in (8). Unless stated dgl) =1,
dV =1,d? =02,d? =0, Fpiy = 05. —— dV) =0, — + — Fiy = 0.2,
-0 — dgl) =2.

Fig 9: Example input displacement using (41). Nondimensionalised as in sec-
tion 4.4.

Fig 10: Applying algebraic equation to input in (41). (a) Force against time,
(b) Force against velocity. d\” = 5x 101, d{" = 1x 108, d'¥ = 5% 103, d¥ =0,
and fo. = 2 x 106.

Fig 11: Effect of changing the compressibility of the fluid in the damper with
sinusoidal displacement input.

Fig 12: 3 =1.9x 107?. (a) Force against time for 2 periods; (b) Force against
velocity; (¢) Dynamics of the valve; and (d) Difference in flow between orifice
and valve.

Fig 13: =10 x 107%. (a) Force against time for 2 periods; (b) Force against
velocity; (¢) Dynamics of the valve; and (d) Difference in flow between orifice
and valve.

Fig 14: 8= 0.1 x 107, (a) Force against time for 2 periods; (b) Force against
velocity; (¢) Dynamics of the valve; and (d) Difference in flow between orifice
and valve.

Fig 15: d is 500% larger. (a) Force against time for 2 periods; (b) Force against
velocity; (¢) Dynamics of the valve; and (d) Difference in flow between orifice
and valve.

Fig 16: d is 20% of original. (a) Force against time for 2 periods; (b) Force
against velocity; (¢) Dynamics of the valve; and (d) Difference in flow between
orifice and valve.

Fig 17: High amplitude oscillations of spring with sinusoidal input. Spring
damping, J, 60% less than used for table 1. (a) Force against time; (b) Force
against velocity; (¢) Dynamics of the valve; and (d) Difference in flow between
orifice and valve.

Fig 18: Force vs displacement for a quarter cycle with blow-off at (yerit, Ferit)-

Fig 19: Work done against stroke length for £=1, dgl):2, dgl):(n, w=1.
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Parameter Value Units
& 1.39x10° | N/m?
f 5.55x10° N
T 0.033 s
v 1.3x10* m
h 11.9 m
Zerit 1.8 -
c1 1.65x103 -
Co 2.18x10% -
C3 1.8 -
4 9.03x10"? -
Cs 4.75x108 -
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Table 1: Parameter values used in sections 5.1 and 5.2




F®

‘ ‘

COrifice (d)

/ Chamber 2

.
o

Chamber 1

y(®

Hydraulic fluid

33



FLOW— = BYPASS TUBE

s
/ ‘ Vavel

Piston

Chamber 1

Spring, k

Chamber 2

Valve?2 /

V]

34



Displacement

Time

35



Force

Time

Force

36

Velocity



Chamber 1 Chamber 2

valve

blowoff orifice, vel>0 WE

spring
main piston orifice

3M blowoff orifice, vel<0

37




~P(t)
crit

3

pressure |0ss

42

Yerit Je(t) y(t) velocity (m/s)

38



92104

Time

39



0.8

<>
<>
<>
<>
<>
<>
<>
<P
<>
<>
X
S /
>
AN >
// S
AN <
<>
<>
<>
<>
<>
<>
<>
<>
<P

<D
1>
I I I I I I B

© < ~ o o = ©

s s o S 0§ 9

(N) @210}

0.4 0.6 0.8

0.2

-0.6 -0.4 -0.2

-0.8

velocity (m/s)

40



40

1
o
™

20

|
o
-

o

uswade|dsiq

1
o
T

_20 -

_30 -

-40

16

14

12

10

Time

41



Force

.5

10

@)

10
Time

is

20

42

Force

—2

—i1o00

5

10°

(O]

o
Velocity

50



Force (N)

8000 -

T

6000

4000

T

2000

-2000 =

Il Il Il Il Il

increasing beta

Il Il

increasing beta

Il J

-4000
-0.1

-0.08 -0.06 -0.04 -0.02 0

velocity (m/s)

43

0.02 0.04

0.08 0.1



25

15

0.5

@

x 10"

tau

©

10

15

tau

10

15

44

1Q-IQ,

(b)

-100 -50 0 50 100

dY/d(tau)

x 10 (d)

tau



1.2

0.8

0.4

0.2

@

x 10"

tau

©

tau

45

(b)

-100 -50 0 50 100

dY/d(tau)

x 10 (d)

tau



(@ (b)

N
N

o
o

-2 -2
-4 -4
0 100 200 300 -100 -50 0 50 100
tau dY/d(tau)
(©) x107° (d)
0.01 1
0.008 0
0.006 §>—1
I_O
0.004 o-2
0.002 -3
0 A [N !\ ‘ !\ A f\ A A _a ‘ ‘
0 100 200 300 0 100 200 300
tau tau

46



1500

@

1000

500

G
=

-500

-1000

-1500
0

2000

4000

tau

©

6000

8000

10000

4000

3000

T 2000

1000

0

2000

4000

tau

6000

8000

10000

47

1500

1000

500

G
[=

-500

-1000

100

(b)

500
-100 -50 0 50 100

dY/d(tau)

(d)

Ml

00
0 2000 4000 6000 8000 10000

tau



x 107 (@)

0 0.005 0.01 0.015 0.02
tau

x10 (©

0 0.005 0.01 0.015

tau

48

-100 -50 0 50 100
dY/d(tau)

()
20

1Q-1Q,]
5

-100 ‘ : :
0 0005 001 0015  0.02
tau



@
25

15

0.5

tau

x 10~ ©

tau

49

25

15

0.5

(b)

0 2 4 6
dY/d(tau)
x107° (d)
0 10 15 20
tau



Force (N)

Fmax
Fcrit

0 : y (m)
ycrit - ymax

20



wd ]
0.54

0.92

0.9
0.881
086
054

0.52

0.51

15 ¥im) 2

ol

25



