2,765 research outputs found

    Node Labels in Local Decision

    Get PDF
    The role of unique node identifiers in network computing is well understood as far as symmetry breaking is concerned. However, the unique identifiers also leak information about the computing environment - in particular, they provide some nodes with information related to the size of the network. It was recently proved that in the context of local decision, there are some decision problems such that (1) they cannot be solved without unique identifiers, and (2) unique node identifiers leak a sufficient amount of information such that the problem becomes solvable (PODC 2013). In this work we give study what is the minimal amount of information that we need to leak from the environment to the nodes in order to solve local decision problems. Our key results are related to scalar oracles ff that, for any given nn, provide a multiset f(n)f(n) of nn labels; then the adversary assigns the labels to the nn nodes in the network. This is a direct generalisation of the usual assumption of unique node identifiers. We give a complete characterisation of the weakest oracle that leaks at least as much information as the unique identifiers. Our main result is the following dichotomy: we classify scalar oracles as large and small, depending on their asymptotic behaviour, and show that (1) any large oracle is at least as powerful as the unique identifiers in the context of local decision problems, while (2) for any small oracle there are local decision problems that still benefit from unique identifiers.Comment: Conference version to appear in the proceedings of SIROCCO 201

    Locality of Not-So-Weak Coloring

    Get PDF
    Many graph problems are locally checkable: a solution is globally feasible if it looks valid in all constant-radius neighborhoods. This idea is formalized in the concept of locally checkable labelings (LCLs), introduced by Naor and Stockmeyer (1995). Recently, Chang et al. (2016) showed that in bounded-degree graphs, every LCL problem belongs to one of the following classes: - "Easy": solvable in O(logn)O(\log^* n) rounds with both deterministic and randomized distributed algorithms. - "Hard": requires at least Ω(logn)\Omega(\log n) rounds with deterministic and Ω(loglogn)\Omega(\log \log n) rounds with randomized distributed algorithms. Hence for any parameterized LCL problem, when we move from local problems towards global problems, there is some point at which complexity suddenly jumps from easy to hard. For example, for vertex coloring in dd-regular graphs it is now known that this jump is at precisely dd colors: coloring with d+1d+1 colors is easy, while coloring with dd colors is hard. However, it is currently poorly understood where this jump takes place when one looks at defective colorings. To study this question, we define kk-partial cc-coloring as follows: nodes are labeled with numbers between 11 and cc, and every node is incident to at least kk properly colored edges. It is known that 11-partial 22-coloring (a.k.a. weak 22-coloring) is easy for any d1d \ge 1. As our main result, we show that kk-partial 22-coloring becomes hard as soon as k2k \ge 2, no matter how large a dd we have. We also show that this is fundamentally different from kk-partial 33-coloring: no matter which k3k \ge 3 we choose, the problem is always hard for d=kd = k but it becomes easy when dkd \gg k. The same was known previously for partial cc-coloring with c4c \ge 4, but the case of c<4c < 4 was open

    Constraining the orbit of the possible companion to Beta Pictoris: New deep imaging observations

    Get PDF
    We recently reported on the detection of a possible planetary-mass companion to Beta Pictoris at a projected separation of 8 AU from the star, using data taken in November 2003 with NaCo, the adaptive-optics system installed on the Very Large Telescope UT4. Eventhough no second epoch detection was available, there are strong arguments to favor a gravitationally bound companion rather than a background object. If confirmed and located at a physical separation of 8 AU, this young, hot (~1500 K), massive Jovian companion (~8 Mjup) would be the closest planet to its star ever imaged, could be formed via core-accretion, and could explain the main morphological and dynamical properties of the dust disk. Our goal was to return to Beta Pic five years later to obtain a second-epoch observation of the companion or, in case of a non-detection, constrain its orbit. Deep adaptive-optics L'-band direct images of Beta Pic and Ks-band Four-Quadrant-Phase-Mask (4QPM) coronagraphic images were recorded with NaCo in January and February 2009. We also use 4QPM data taken in November 2004. No point-like signal with the brightness of the companion candidate (apparent magnitudes L'=11.2 or Ks ~ 12.5) is detected at projected distances down to 6.5 AU from the star in the 2009 data. As expected, the non-detection does not allow to rule out a background object; however, we show that it is consistent with the orbital motion of a bound companion that got closer to the star since first observed in 2003 and that is just emerging from behind the star at the present epoch. We place strong constraints on the possible orbits of the companion and discuss future observing prospects.Comment: 8 pages, 8 figures, 1 table, accepted for publication in Astronomy and Astrophysic

    Gas-phase CO2 emission toward Cepheus A East: the result of shock activity?

    Get PDF
    We report the first detection of gas-phase CO2 emission in the star-forming region Cepheus A East, obtained by spectral line mapping of the v2 bending mode at 14.98 micron with the Infrared Spectrograph (IRS) instrument onboard the Spitzer Space Telescope. The gaseous CO2 emission covers a region about 35'' x 25'' in extent, and results from radiative pumping by 15 micron continuum photons emanating predominantly from the HW2 protostellar region. The gaseous CO2 exhibits a temperature distribution ranging from 50 K to 200 K. A correlation between the gas-phase CO2 distribution and that of H2 S(2), a tracer of shock activity, indicates that the CO2 molecules originate in a cool post-shock gas component associated with the outflow powered by HW2. The presence of CO2 ice absorption features at 15.20 micron toward this region and the lack of correlation between the IR continuum emission and the CO2 gas emission distribution further suggest that the gaseous CO2 molecules are mainly sputtered off grain mantles -- by the passage of slow non-dissociative shocks with velocities of 15-30 km/s -- rather than sublimated through grain heating.Comment: 11 pages, 6 figures, accepted for publication in ApJ

    Applying consumer responsibility principle in evaluating environmental load of carbon emissions

    Get PDF
    There is a need for a proper indicator in order to assess the environmental impact of international trade, therefore using the carbon footprint as an indicator can be relevant and useful. The aim of this study is to show from a methodological perspective how the carbon footprint, combined with input- output models can be used for analysing the impacts of international trade on the sustainable use of national resources in a country. The use of the input-output approach has the essential advantage of being able to track the transformation of goods through the economy. The study examines the environmental impact of consumption related to international trade, using the consumer responsibility principle. In this study the use of the carbon footprint and input-output methodology is shown on the example of the Hungarian consumption and the impact of international trade. Moving from a production- based approach in climate policy to a consumption-perspective principle and allocation, would also help to increase the efficiency of emission reduction targets and the evaluation of the ecological impacts of international trade

    NACO Polarimetric Differential Imaging of TW Hya: A Sharp Look at the Closest T Tauri Disk

    Full text link
    We present high-contrast imaging data on the disk of the classical T Tauri star TW Hya. The images were obtained through the polarimetric differential imaging technique with the adaptive optics system NACO. Our commissioning data show the presence of polarized disk emission between 0.1" and 1.4" from the star. We derive the first Ks-band radial polarized intensity distribution. We show that the polarized intensity compares well to shorter wavelengths surface brightness observations and confirm the previously reported gradual slope change around 0.8". These results show the potential of the new polarimetric differential imaging technique at 8m-class telescopes to map the inner regions of protoplanetary disks.Comment: Accepted for publication in Astronomy & Astrophysics; 7 pages, 7 figure

    Detection of the Sgr A* activity at 3.8 and 4.8 microns with NACO

    Full text link
    L'-band (lambda=3.8 microns) and M'-band (lambda=4.8 microns) observations of the Galactic Center region, performed in 2003 at VLT (ESO) with the adaptive optics imager NACO, have lead to the detection of an infrared counterpart of the radio source Sgr A* at both wavelengths. The measured fluxes confirm that the Sgr A* infrared spectrum is dominated by the synchrotron emission of nonthermal electrons. The infrared counterpart exhibits no significant short term variability but demonstrates flux variations on daily and yearly scales. The observed emission arises away from the position of the dynamical center of the S2 orbit and would then not originate from the closest regions of the black hole.Comment: 5 pages, 3 figures, accepted in Astronomy & Astrophysic

    Synchronous Counting and Computational Algorithm Design

    No full text
    Consider a complete communication network on nn nodes, each of which is a state machine. In synchronous 2-counting, the nodes receive a common clock pulse and they have to agree on which pulses are "odd" and which are "even". We require that the solution is self-stabilising (reaching the correct operation from any initial state) and it tolerates ff Byzantine failures (nodes that send arbitrary misinformation). Prior algorithms are expensive to implement in hardware: they require a source of random bits or a large number of states. This work consists of two parts. In the first part, we use computational techniques (often known as synthesis) to construct very compact deterministic algorithms for the first non-trivial case of f=1f = 1. While no algorithm exists for n<4n < 4, we show that as few as 3 states per node are sufficient for all values n4n \ge 4. Moreover, the problem cannot be solved with only 2 states per node for n=4n = 4, but there is a 2-state solution for all values n6n \ge 6. In the second part, we develop and compare two different approaches for synthesising synchronous counting algorithms. Both approaches are based on casting the synthesis problem as a propositional satisfiability (SAT) problem and employing modern SAT-solvers. The difference lies in how to solve the SAT problem: either in a direct fashion, or incrementally within a counter-example guided abstraction refinement loop. Empirical results suggest that the former technique is more efficient if we want to synthesise time-optimal algorithms, while the latter technique discovers non-optimal algorithms more quickly

    Chloroplast cold-resistance is mediated by the acidic domain of the RNA binding protein CP31A

    Get PDF
    Chloroplast RNA metabolism is characterized by long-lived mRNAs that undergo a multitude of post-transcriptional processing events. Chloroplast RNA accumulation responds to environmental cues, foremost light and temperature. A large number of nuclear-encoded RNA-binding proteins (RBPs) are required for chloroplast RNA metabolism, but we do not yet know how chloroplast RBPs convert abiotic signals into gene expression changes. Previous studies showed that the chloroplast ribonucleoprotein 31A (CP31A) is required for the stabilization of multiple chloroplast mRNAs in the cold, and that the phosphorylation of CP31A at various residues within its N-terminal acidic domain (AD) can alter its affinity for RNA in vitro. Loss of CP31A leads to cold sensitive plants that exhibit bleached tissue at the center of the vegetative rosette. Here, by applying RIP-Seq, we demonstrated that CP31A shows increased affinity for a large number of chloroplast RNAs in vivo in the cold. Among the main targets of CP31A were RNAs encoding subunits of the NDH complex and loss of CP31A lead to reduced accumulation of ndh transcripts. Deletion analyses revealed that cold-dependent RNA binding and cold resistance of chloroplast development both depend on the AD of CP31A. Together, our analysis established the AD of CP31A as a key mediator of cold acclimation of the chloroplast transcriptome

    Fully Sampled Maps of Ices and Silicates in Front of Cepheus A East with Spitzer

    Full text link
    We report the first fully sampled maps of the distribution of interstellar CO2 ices, H2O ices and total hydrogen nuclei, as inferred from the 9.7 micron silicate feature, toward the star-forming region Cepheus A East with the IRS instrument onboard the Spitzer Space Telescope. We find that the column density distributions for these solid state features all peak at, and are distributed around, the location of HW2, the protostar believed to power one of the outflows observed in this star-forming region. A correlation between the column density distributions of CO2 and water ice with that of total hydrogen indicates that the solid state features we mapped mostly arise from the same molecular clumps along the probed sight lines. We therefore derive average CO2 ice and water ice abundances with respect to the total hydrogen column density of X(CO2)_ice~1.9x10^-5 and X(H2O)_ice~7.5x10^-5. Within errors, the abundances for both ices are relatively constant over the mapped region exhibiting both ice absorptions. The fraction of CO2 ice with respect to H2O ice is also relatively constant at a value of 22% over that mapped region. A clear triple-peaked structure is seen in the CO2 ice profiles. Fits to those profiles using current laboratory ice analogs suggest the presence of both a low-temperature polar ice mixture and a high-temperature methanol-rich ice mixture along the probed sightlines. Our results further indicate that thermal processing of these ices occurred throughout the sampled region.Comment: 26 pages, 8 figures, accepted for publication in Ap
    corecore