944 research outputs found

    CRRES: Combined Release and Radiation Effects Satellite Program Summary

    Get PDF
    The experiments that comprise the Combined Release and Radiation Effects Satellite Program (CRRES) (Apr. 1990 - Jul. 1992) are presented. The experiments are as follows: PEGSAT; El Coqui; the Kwajalein Campaign; and experiments G1 - G14

    CRRES: The combined release and radiation effects satellite program directory

    Get PDF
    As a result of natural processes, plasma clouds are often injected into the magnetosphere. These chemical releases can be used to study many aspects of such injections. When a dense plasma is injected into the inner magnetosphere, it is expected to take up the motion of the ambient plasma. However, it has been observed in previous releases at moderate altitudes that the cloud preserved its momentum for some time following the release and that parts of the cloud peeled off from the main cloud presumable due to the action of an instability. As one moves outward into the magnetosphere, the mirror force becomes less dominant and the initial conditions following a release are dominated by the formation of a diamagnetic cavity since the initial plasma pressure from the injected Ba ions is greater than the magnetic field energy density. A previous high-altitude release (31,300 km) showed this to be the case initially, but at later times there was evidence for acceleration of the Ba plasma to velocities corresponding to 60,000 K. This effect is not explained. This series of experiments is therefore designed to inject plasma clouds into the magnetosphere under widely varying conditions of magnetic field strength and ambient plasma density. In this way the coupling of injected clouds to the ambient plasma and magnetic field, the formation of striations due to instabilities, and possible heating and acceleration of the injected Ba plasma can be studied over a wide range of magnetosphere parameters. Adding to the scientific yield will be the availability of measurements for the DOD/SPACERAD instruments which can monitor plasma parameters, electric and magnetic fields, and waves before, during and after the releases

    Theology and Humor

    Get PDF

    Contemporary Issues in Theological Education

    Get PDF

    Man and Sin in the Perspective of Biblical Theology

    Get PDF
    https://place.asburyseminary.edu/firstfruitspapers/1007/thumbnail.jp

    Biogeochemical implications of biodiversity and community structure across multiple coastal ecosystems

    Get PDF
    Small-scale experiments and theory suggest that ecological functions provided by communities become more stable with increased species richness. Whether these patterns manifest at regional spatial scales and within species-rich communities (e.g., coral reefs) is largely unknown. We quantified five biogeochemical processes, and an aggregate measure of multifunctionality, in species-rich coastal fish communities to test three questions: (1) Do previously predicted biodiversity-ecosystem-function relationships hold across large spatial scales and in highly diverse communities? (2) Can additional covariates of community structure improve these relationships? (3) What is the role of community biomass and functional group diversity in maintaining biogeochemical processes under various scenarios of species loss across ecosystem types? These questions were tested across a large regional gradient of coral reef, mangrove and seagrass ecosystems. Statistical models demonstrated that species richness and the mean maximum body size per species strongly predicted biogeochemical processes in all ecosystem types, but functional group diversity was only a weak predictor. Simulating three scenarios of species loss demonstrated that conserving community biomass alone increased the ability for communities to maintain ecosystem processes. Multifunctionality of biogeochemical processes was maintained least in simulations that conserved biomass and community structure, underscoring the relative lack of importance of community structure in maintaining multiple simultaneous ecosystem functions in this system. Findings suggest that conserving community biomass alone may be sufficient to sustain certain biogeochemical processes, but when considering conservation of multiple simultaneous biogeochemical processes, management efforts should focus first on species richness

    Book Reviews

    Get PDF

    Targeted next generation sequencing approach identifies eighteen new candidate genes in normosmic hypogonadotropic hypogonadism and Kallmann Syndrome

    Get PDF
    The genetic basis is unknown for ∼60% of normosmic hypogonadotropic hypogonadism (nHH)/Kallmann syndrome (KS). DNAs from (17 male and 31 female) nHH/KS patients were analyzed by targeted next generation sequencing (NGS) of 261 genes involved in hypothalamic, pituitary, and/or olfactory pathways, or suggested by chromosome rearrangements. Selected variants were subjected to Sanger DNA sequencing, the gold standard. The frequency of Sanger-confirmed variants was determined using the ExAC database. Variants were classified as likely pathogenic (frameshift, nonsense, and splice site) or predicted pathogenic (nonsynonymous missense). Two novel FGFR1 mutations were identified, as were 18 new candidate genes including: AMN1, CCKBR, CRY1, CXCR4, FGF13, GAP43, GLI3, JAG1, NOS1, MASTL, NOTCH1, NRP2, PALM2, PDE3A, PLEKHA5, RD3, and TRAPPC9, and TSPAN11. Digenic and trigenic variants were found in 8/48 (16.7%) and 1/48 (2.1%) patients, respectively. NGS with confirmation by Sanger sequencing resulted in the identification of new causative FGFR1 gene mutations and suggested 18 new candidate genes in nHH/KS
    • …
    corecore