634 research outputs found

    Radio Properties of Low Redshift Broad Line Active Galactic Nuclei

    Full text link
    The question as to whether the distribution of radio-loudness in active galactic nuclei (AGN) is actually bimodal has been discussed extensively in the literature. Futhermore, there have been claims that radio-loudness depends on black hole mass and Eddington ratio. We investigate these claims using the low redshift broad line AGN sample of Greene & Ho (2007), which consists of 8434 objects at z < 0.35 from the Sloan Digital Sky Survey Fourth Data Release (SDSS DR4). We obtained radio fluxes from the Very Large Array Faint Images of the Radio Sky at Twenty-Centimeters (FIRST) survey for the SDSS AGN. Out of the 8434 SDSS AGN, 821 have corresponding observed radio fluxes in the FIRST survey. We calculated the radio-loudness parameter (R) for all objects above the FIRST detection limit (1 mJy), and an upper limit to R for the undetected objects. Using these data, the question of radio bimodality is investigated for different subsets of the total sample. We find no clear demarcation between the radio-loud (RL, R > 10) and radio-quiet (RQ, R < 10) objects, but instead fill in a more radio-intermediate population in a continuous fashion for all subsamples. We find that 4.7% of the AGN in the flux-limited subsample are RL based on core radio emission alone. We calculate the radio-loud fraction (RLF) as both a function of black hole mass and Eddington ratio. The RLF decreases (from 13% to 2%) as Eddington ratio increases over 2.5 order of magnitude. The RLF is nearly constant (~5%) over 4 decades in black hole mass, except for an increase at masses greater than 10^8 solar masses. We find for the FIRST detected subsample that 367 of the RL AGN have black hole masses less than 10^8 solar masses, a large enough number to indicate that RL AGN are not a product of only the most massive black holes in the local universe.Comment: 28 pages, 14 figures, accepted to A

    Non-LTE Models and Theoretical Spectra of Accretion Disks in Active Galactic Nuclei

    Full text link
    We present self-consistent models of the vertical structure and emergent spectrum of AGN accretion disks. The central object is assumed to be a supermassive Kerr black hole. We demonstrate that NLTE effects and the effects of a self-consistent vertical structure of a disk play a very important role in determining the emergent radiation, and therefore should be taken into account. In particular, NLTE models exhibit a largely diminished H I Lyman discontinuity when compared to LTE models, and the He II discontinuity appears strongly in emission for NLTE models. Consequently, the number of ionizing photons in the He II Lyman continuum predicted by NLTE disk models is by 1 - 2 orders of magnitude higher than that following from the black-body approximation. This prediction has important implications for ionization models of AGN broad line regions, and for models of the intergalactic radiation field and the ionization of helium in the intergalactic medium.Comment: 11 pages; 2 postscript figures; LaTeX, AASPP4 macro; to appear in the Astrophysical Journal (Letters

    Discovery of Millimeter-Wave Excess Emission in Radio-Quiet Active Galactic Nuclei

    Full text link
    The physical origin of radio emission in Radio Quiet Active Galactic Nuclei (RQ AGN) remains unclear, whether it is a downscaled version of the relativistic jets typical of Radio Loud (RL) AGN, or whether it originates from the accretion disk. The correlation between 5 GHz and X-ray luminosities of RQ AGN, which follows LR=105LXL_R = 10^{-5}L_X observed also in stellar coronae, suggests an association of both X-ray and radio sources with the accretion disk corona. Observing RQ AGN at higher (mm-wave) frequencies, where synchrotron self absorption is diminished, and smaller regions can be probed, is key to exploring this association. Eight RQ AGN, selected based on their high X-ray brightness and variability, were observed at 95 GHz with the CARMA and ATCA telescopes. All targets were detected at the 1101-10 mJy level. Emission excess at 95~GHz of up to ×7\times 7 is found with respect to archival low-frequency steep spectra, suggesting a compact, optically-thick core superimposed on the more extended structures that dominate at low frequencies. Though unresolved, the 95 GHz fluxes imply optically thick source sizes of 10410310^{-4}-10^{-3} pc, or 101000\sim 10 - 1000 gravitational radii. The present sources lie tightly along an LRL_R (95 GHz) = 104LX10^{-4}L_X (2-10 keV) correlation, analogous to that of stellar coronae and RQ AGN at 5 GHz, while RL AGN are shown to have higher LR/LXL_R / L_X ratios. The present observations argue that simultaneous mm-wave and X-ray monitoring of RQ AGN features a promising method for understanding accretion disk coronal emission.Comment: 11 pages, 3 figures; submitted to MNRAS (2 referee revision); comments are welcom

    Central Masses and Broad-Line Region Sizes of Active Galactic Nuclei: I. Comparing the Photoionization and Reverberation Techniques

    Full text link
    The masses and emission-line region sizes of Active Galactic Nuclei (AGNs) can be measured by ``reverberation-mapping'' (measuring the lag of the emission-line luminosity after changes in the continuum). We use tis technique to calibrate similar size and mass estimates made by photoionization models of the AGN line-emitting regions. We compile a sample of 19 AGNs with reliable reverberation and spectroscopy data, twice the number available previously. The data provide strong evidence that the BLR size and the emission-line width measure directly the central mass. Two methods are used to estimate the distance of the broad emission-line region (BLR) from the ionizing source: the photoionization method (available for many AGNs but has large intrinsic uncertainties), and the reverberation method (gives very reliable distances, but available for only a few objects). The distance estimate is combined with the velocity dispersion, derived from the broad Hb line profile, to estimate the virial mass. Comparing the central masses calculated with the reverberation method to those calculated using a photoionization model, we find a highly significant, nearly linear correlation. This provides a calibration of the photoionization method on the objects with presently available reverberation data, which should enable mass estimates for all AGNs with measured Hb line width. Comparing the BLR sizes given by the two methods also enables us to estimate the ionizing EUV luminosity which is directly unobservable. We find it to be typically ten times the visible (monochromatic luminosity at 5100A). The inferred Eddington ratio of the individual objects in our sample are 0.001-0.03 (visible luminosity) and 0.01-0.3 (ionizing luminosity).Comment: 27 pages Latex, 8 figures. Accepted for publication in the Astrophysical Journa

    Radio Properties of Low Redshift Broad Line Active Galactic Nuclei Including Extended Radio Sources

    Full text link
    We present a study of the extended radio emission in a sample of 8434 low redshift (z < 0.35) broad line active galactic nuclei (AGN) from the Sloan Digital Sky Survey (SDSS). To calculate the jet and lobe contributions to the total radio luminosity, we have taken the 846 radio core sources detected in our previous study of this sample and performed a systematic search in the Faint Images of the Radio Sky at Twenty-centimeters (FIRST) database for extended radio emission that is likely associated with the optical counterparts. We found 51 out of 846 radio core sources have extended emission (> 4" from the optical AGN) that is positively associated with the AGN, and we have identified an additional 12 AGN with extended radio emission but no detectable radio core emission. Among these 63 AGN, we found 6 giant radio galaxies (GRGs), with projected emission exceeding 750 kpc in length, and several other AGN with unusual radio morphologies also seen in higher redshift surveys. The optical spectra of many of the extended sources are similar to that of typical broad line radio galaxy spectra, having broad Hα\alpha emission lines with boxy profiles and large M_BH. With extended emission taken into account, we find strong evidence for a bimodal distribution in the radio-loudness parameter R, where the lower radio luminosity core-only sources appear as a population separate from the extended sources, with a dividing line at log(R) 1.75\approx 1.75. This dividing line ensures that these are indeed the most radio-loud AGN, which may have different or extreme physical conditions in their central engines when compared to the more numerous radio quiet AGN.Comment: 25 pages, 6 figures, accepted to A

    The Soft X-Ray Properties of a Complete Sample of Optically Selected Quasars II. Final Results

    Get PDF
    We present the final results of a ROSAT PSPC program to study the soft X-ray emission properties of a complete sample of low zz quasars. The main results are: 1. There is no evidence for significant soft excess emission or excess foreground absorption by cold gas in 22 of the 23 quasars. 2. The mean 0.2-2 keV continuum of quasars agrees remarkably well with an extrapolation of the mean 1050-350A continuum recently determined by Zheng et al. (1996), indicating that there is no steep soft component below 0.2 keV. 3. The occurrence of warm absorbers in quasars is rather rare, in sharp contrast to lower luminosity AGN. 4. The strongest correlation found is between the spectral slope, alpha_x, and the Hb FWHM. This remarkably strong correlation may result from a dependence of alpha_x on L/L_Edd, as seen in Galactic black hole candidates. 5. There appears to exist a distinct class of ``X-ray weak'' quasars. These may be quasars where the direct X-ray source is obscured, and only scattered X-rays are observed. 6. Thin accretion disk models cannot reproduce the observed optical to soft X-ray spectral shape. An as yet unknown physical mechanism maintains a strong correlation between the optical and soft X-ray emission. 7. The well known difference in alpha_x between radio-loud and radio-quiet quasars may be due only to their different Hb FWHM. 8. The agreement of the 21 cm and X-ray columns implies that He in the diffuse H II component of the Galactic ISM is ionized to He II or He III (shortened abstract).Comment: 19 pages of text only, uses aas2pp4.sty file, to appear in ApJ vol. 447, 3/1/97, complete postscript version of 34 pages including 5 tables and 8 figures available at http://physics.technion.ac.il/~laor/rosat/paper.p

    Are quasars accreting at super-Eddington rates?

    Get PDF
    In a previous paper, Collin & Hur\'e (2001), using a sample of Active Galactic Nuclei (AGN) where the mass has been determined by reverberation studies (Kaspi et al. 2000), have shown that if the optical luminosity is emitted by a steady accretion disc, about half of the objects are accreting close to or higher than the Eddington rate. We conclude here that this result is unavoidable, unless the masses are strongly underestimated by reverberation studies, which does not seem to be the case. There are three issues to the problem: 1. Accretion proceeds at Eddington or super-Eddington rates through thick discs. Several consequences follow: an anti-correlation between the line widths of the lines and the Eddington ratios, and a decrease of the Eddington ratio with an increasing black hole mass. Extrapolated to all quasars, these results imply that the amount of mass locked in massive black holes should be larger than presently thought. 2. The optical luminosity is not produced directly by the gravitational release of energy, and super-Eddington rates are not required. The optical luminosity has to be emitted by a dense and thick medium located at large distances from the center (103^3 to 10410^4 gravitational radii). It can be due to reprocessing of the X-ray photons from the central source in a geometrically thin warped disc, or in dense "blobs" forming a geometrically thick system, which can be a part of the accretion flow or the basis of an outflow. 3. Accretion discs are completely "non standard". Presently neither the predictions of models nor the observed spectral distributions are sufficient to help choosing between these solutions.Comment: 16 pages, 11 figures, accepted in A&
    corecore