804 research outputs found
Reliability approach to rotating-component design
A probabilistic methodology for designing rotating mechanical components using reliability to relate stress to strength is explained. The experimental test machines and data obtained for steel to verify this methodology are described. A sample mechanical rotating component design problem is solved by comparing a deterministic design method with the new design-by reliability approach. The new method shows that a smaller size and weight can be obtained for specified rotating shaft life and reliability, and uses the statistical distortion-energy theory with statistical fatigue diagrams for optimum shaft design. Statistical methods are presented for (1) determining strength distributions for steel experimentally, (2) determining a failure theory for stress variations in a rotating shaft subjected to reversed bending and steady torque, and (3) relating strength to stress by reliability
ASDTIC: A feedback control innovation
The ASDTIC (Analog Signal to Discrete Time Interval Converter) control subsystem provides precise output control of high performance aerospace power supplies. The key to ASDTIC operation is that it stably controls output by sensing output energy change as well as output magnitude. The ASDTIC control subsystem and control module were developed to improve power supply performance during static and dynamic input voltage and output load variations, to reduce output voltage or current regulation due to component variations or aging, to maintain a stable feedback control with variations in the loop gain or loop time constants, and to standardize the feedback control subsystem for power conditioning equipment
Design features and results from fatigue reliability research machines
Design and performance tests for reversed bending with steady torque fatigue test machine using notched steel specimen
Cms gem detector material study for the hl-lhc
A study on the Gaseous Electron Multiplier (GEM) foil material is performed to determine the moisture diffusion rate, moisture saturation level and the effects on its mechanical properties. The study is focused on the foil contact with ambient air and moisture to determine the value of the diffusion coefficient of water in the foil material. The presence of water inside the detector foil can determine the changes in its mechanical and electrical properties. A simulated model is developed with COMSOL Multiphysics v. 4.3 [1] by taking into account the real GEM foil (hole dimensions, shapes and material), which describes the adsorption of water. This work describes the model, its experimental verification, the water diffusion within the entire sheet geometry of the GEM foil, thus gaining concentration profiles and the time required to saturate the system and the effects on the mechanical properties
Mechanisms of institutional continuity in neoliberal "success stories" : developmental regimes in Chile and Estonia
© 2015 by The American Society for Biochemistry and Molecular Biology, Inc. Several mycoplasmas, such as the emergent human pathogen Mycoplasma genitalium, developed a complex polar structure, known as the terminal organelle (TO), responsible for a new type of cellular motility, which is involved in a variety of cell functions: cell division, adherence to host cells, and virulence. The TO cytoskeleton is organized as a multisubunit dynamic motor, including three main ultrastructures: the terminal button, the electrodense core, and the wheel complex. Here, we describe the interaction between MG200 and MG491, two of the main components of the TO wheel complex that connects the TO with the cell body and the cell membrane. The interaction between MG200 and MG491 has a KD in the 80 nM range, as determined by surface plasmon resonance. The interface between the two partners was confined to the >enriched in aromatic and glycine residues> (EAGR) box of MG200, previously described as a protein-protein interaction domain, and to a 25-residue-long peptide from the C-terminal region of MG491 by surface plasmon resonance and NMR spectroscopy studies. An atomic description of the MG200 EAGR box binding surface was also provided by solution NMR. An M. genitalium mutant lacking the MG491 segment corresponding to the peptide reveals specific alterations in cell motility and cell morphology indicating that the MG200-MG491 interaction plays a key role in the stability and functioning of the TO.This work was supported by Ministerio de Ciencia e Innovacion Grants BFU2012-36827 (to I. F.) and BFU2010-22209-C02-01 (to E. Q.), a grant from the Centre de Referencia de R+D de Biotecnologia (Generalitat de Catalunya, Spain) (to E. Q.), and by FEDER funds through the Operational Competitiveness Programme-COMPETE and by Portuguese national funds through FCT-Fundação para a Ciência e a Tecnologia under Project FCOMP-01-0124-FEDER-027581 (EXPL/BBB-BQB/0546/2012) (to B. C.). The NMR characterization was conducted through the FP7 Access to Research Infrastructures (Bio-NMR Contract 261863) and by Instruct, which is part of the European Strategy Forum on Research Infrastructures (ESFRI) and supported by national member subscriptionsPeer Reviewe
TIME Impact - a new user-friendly tuberculosis (TB) model to inform TB policy decisions.
Tuberculosis (TB) is the leading cause of death from infectious disease worldwide, predominantly affecting low- and middle-income countries (LMICs), where resources are limited. As such, countries need to be able to choose the most efficient interventions for their respective setting. Mathematical models can be valuable tools to inform rational policy decisions and improve resource allocation, but are often unavailable or inaccessible for LMICs, particularly in TB. We developed TIME Impact, a user-friendly TB model that enables local capacity building and strengthens country-specific policy discussions to inform support funding applications at the (sub-)national level (e.g. Ministry of Finance) or to international donors (e.g. the Global Fund to Fight AIDS, Tuberculosis and Malaria).TIME Impact is an epidemiological transmission model nested in TIME, a set of TB modelling tools available for free download within the widely-used Spectrum software. The TIME Impact model reflects key aspects of the natural history of TB, with additional structure for HIV/ART, drug resistance, treatment history and age. TIME Impact enables national TB programmes (NTPs) and other TB policymakers to better understand their own TB epidemic, plan their response, apply for funding and evaluate the implementation of the response.The explicit aim of TIME Impact's user-friendly interface is to enable training of local and international TB experts towards independent use. During application of TIME Impact, close involvement of the NTPs and other local partners also builds critical understanding of the modelling methods, assumptions and limitations inherent to modelling. This is essential to generate broad country-level ownership of the modelling data inputs and results. In turn, it stimulates discussions and a review of the current evidence and assumptions, strengthening the decision-making process in general.TIME Impact has been effectively applied in a variety of settings. In South Africa, it informed the first South African HIV and TB Investment Cases and successfully leveraged additional resources from the National Treasury at a time of austerity. In Ghana, a long-term TIME model-centred interaction with the NTP provided new insights into the local epidemiology and guided resource allocation decisions to improve impact
Increasing compliance with wearing a medical device in children with autism
Health professionals often recommend the use of medical devices to assess the health, monitor
the well-being, or improve the quality of life of their patients. Children with autism may present
challenges in these situations as their sensory peculiarities may increase refusals to wear such
devices. To address this issue, we systematically replicated prior research by examining the
effects of differential reinforcement of other behavior (DRO) to increase compliance with
wearing a heart rate monitor in 2 children with autism. The intervention increased compliance to
100% for both participants when an edible reinforcer was delivered every 90 s. The results
indicate that DRO does not require the implementation of extinction to increase compliance with
wearing a medical device. More research is needed to examine whether the reinforcement
schedule can be further thinned
Toward a computational history of science: The dynamics of socio-epistemic networks and the renaissance of general relativity
The exploding amount of available historical data provides intriguing
possibilities as well as major challenges to historians of science. In the
last years, several quantitative methods have been developed in order to analyze
historical data. At the same time, new analytical frameworks need to be
developed to bring together quantitative methods with the more traditional
historians’ toolkit. The present paper has a twofold aim. The first one is to
briefly review major quantitative approaches that have been developed in the
history of science in two areas: data modeling and network analysis. The second
part of the contribution focuses on applications of social network analysis
to the evolution of knowledge systems. We propose a methodological and
conceptual framework aiming at uncovering the dynamical transformations
of intra- and inter-connections within and between different layers of the scientific
enterprise. We define knowledge networks as being composed of three
different layers: the social network, the semiotic network, and the semantic
network. The first is defined as the collection of relations involving individuals
and institutions. The semiotic network is defined as the collection of the
material or formal representations of knowledge. The semantic network is the
collection of knowledge elements and their relations. We call socio-epistemic
networks the interlinked set of these three levels. As an illustration of this
methodology results drawn from our own work on social and conceptual
changes in the history of general relativity in the 20th century will be presented
- …
