38,667 research outputs found
Filler bar heating due to stepped tiles in the shuttle orbiter thermal protection system
An analytical study was performed to investigate the excessive heating in the tile to tile gaps of the Shuttle Orbiter Thermal Protection System due to stepped tiles. The excessive heating was evidence by visible discoloration and charring of the filler bar and strain isolation pad that is used in the attachment of tiles to the aluminum substrate. Two tile locations on the Shuttle orbiter were considered, one on the lower surface of the fuselage and one on the lower surface of the wing. The gap heating analysis involved the calculation of external and internal gas pressures and temperatures, internal mass flow rates, and the transient thermal response of the thermal protection system. The results of the analysis are presented for the fuselage and wing location for several step heights. The results of a study to determine the effectiveness of a half height ceramic fiber gap filler in preventing hot gas flow in the tile gaps are also presented
Snell's Law from an Elementary Particle Viewpoint
Snell's law of light deflection between media with different indices of
refraction is usually discussed in terms of the Maxwell electromagnetic wave
theory. Snell's law may also be derived from a photon beam theory of light
rays. This latter particle physics view is by far the most simple one for
understanding the laws of refraction.Comment: ReVTeX Format 2 *.eps figure
Non-ancient solution of the Ricci flow
For any complete noncompact Khler manifold with nonnegative and
bounded holomorphic bisectional curvature,we provide the necessary and
sufficient condition for non-ancient solution to the Ricci flow in this paper.Comment: seven pages, latex fil
Metamaterials for light rays: ray optics without wave-optical analog in the ray-optics limit
Volumes of sub-wavelength electromagnetic elements can act like homogeneous
materials: metamaterials. In analogy, sheets of optical elements such as prisms
can act ray-optically like homogeneous sheet materials. In this sense, such
sheets can be considered to be metamaterials for light rays (METATOYs).
METATOYs realize new and unusual transformations of the directions of
transmitted light rays. We study here, in the ray-optics and scalar-wave
limits, the wave-optical analog of such transformations, and we show that such
an analog does not always exist. Perhaps, this is the reason why many of the
ray-optical possibilities offered by METATOYs have never before been
considered.Comment: 10 pages, 3 figures, references update
Power Spectrum Correlations Induced by Non-Linear Clustering
Gravitational clustering is an intrinsically non-linear process that
generates significant non-Gaussian signatures in the density field. We consider
how these affect power spectrum determinations from galaxy and weak-lensing
surveys. Non-Gaussian effects not only increase the individual error bars
compared to the Gaussian case but, most importantly, lead to non-trivial
cross-correlations between different band-powers. We calculate the
power-spectrum covariance matrix in non-linear perturbation theory (weakly
non-linear regime), in the hierarchical model (strongly non-linear regime), and
from numerical simulations in real and redshift space. We discuss the impact of
these results on parameter estimation from power spectrum measurements and
their dependence on the size of the survey and the choice of band-powers. We
show that the non-Gaussian terms in the covariance matrix become dominant for
scales smaller than the non-linear scale, depending somewhat on power
normalization. Furthermore, we find that cross-correlations mostly deteriorate
the determination of the amplitude of a rescaled power spectrum, whereas its
shape is less affected. In weak lensing surveys the projection tends to reduce
the importance of non-Gaussian effects. Even so, for background galaxies at
redshift z=1, the non-Gaussian contribution rises significantly around l=1000,
and could become comparable to the Gaussian terms depending upon the power
spectrum normalization and cosmology. The projection has another interesting
effect: the ratio between non-Gaussian and Gaussian contributions saturates and
can even decrease at small enough angular scales if the power spectrum of the
3D field falls faster than 1/k^2.Comment: 34 pages, 15 figures. Revised version, includes a clearer explanation
of why the hierarchical ansatz does not provide a good model of the
covariance matrix in the non-linear regime, and new constraints on the
amplitudes Ra and Rb for general 4-pt function configurations in the
non-linear regim
Separating E and B types of polarization on an incomplete sky
Detection of magnetic-type (-type) polarization in the Cosmic Microwave
Background (CMB) radiation plays a crucial role in probing the relic
gravitational wave (RGW) background. In this paper, we propose a new method to
deconstruct a polarization map on an incomplete sky in real space into purely
electric and magnetic polarization type maps, and
, respectively. The main properties of our
approach are as follows: Firstly, the fields and
are constructed in real space with a minimal loss
of information. This loss of information arises due to the removal of a narrow
edge of the constructed map in order to remove various numerical errors,
including those arising from finite pixel size. Secondly, this method is fast
and can be efficiently applied to high resolution maps due to the use of the
fast spherical harmonics transformation. Thirdly, the constructed fields,
and , are scalar
fields. For this reason various techniques developed to deal with temperature
anisotropy maps can be directly applied to analyze these fields. As a concrete
example, we construct and analyze an unbiased estimator for the power spectrum
of the -mode of polarization . Basing our results on the
performance of this estimator, we discuss the RGW detection ability of two
future ground-based CMB experiments, QUIET and POLARBEAR.Comment: 43 pages, 15 figures, 1 table. The finial version, will appear in PR
Development of integrated thermionic circuits for high-temperature applications
Integrated thermionic circuits (ITC) capable of extended operation in ambient temperatures up to 500 C are studied. A set of practical design and performance equations is demonstrated. Experimental results are discussed in which both devices and simple circuits were successfully operated in 5000 C environments for extended periods. It is suggested that ITC's may become an important technology for high temperature instrumentation and control systems in geothermal and other high temperature environments
Transfer Entropy as a Log-likelihood Ratio
Transfer entropy, an information-theoretic measure of time-directed
information transfer between joint processes, has steadily gained popularity in
the analysis of complex stochastic dynamics in diverse fields, including the
neurosciences, ecology, climatology and econometrics. We show that for a broad
class of predictive models, the log-likelihood ratio test statistic for the
null hypothesis of zero transfer entropy is a consistent estimator for the
transfer entropy itself. For finite Markov chains, furthermore, no explicit
model is required. In the general case, an asymptotic chi-squared distribution
is established for the transfer entropy estimator. The result generalises the
equivalence in the Gaussian case of transfer entropy and Granger causality, a
statistical notion of causal influence based on prediction via vector
autoregression, and establishes a fundamental connection between directed
information transfer and causality in the Wiener-Granger sense
The Ranger 4 Flight Path and Its Determination from Tracking Data
The ranger iv flight path and its determination from tracking dat
- …
