Detection of magnetic-type (B-type) polarization in the Cosmic Microwave
Background (CMB) radiation plays a crucial role in probing the relic
gravitational wave (RGW) background. In this paper, we propose a new method to
deconstruct a polarization map on an incomplete sky in real space into purely
electric and magnetic polarization type maps, E(γ^) and
B(γ^), respectively. The main properties of our
approach are as follows: Firstly, the fields E(γ^) and
B(γ^) are constructed in real space with a minimal loss
of information. This loss of information arises due to the removal of a narrow
edge of the constructed map in order to remove various numerical errors,
including those arising from finite pixel size. Secondly, this method is fast
and can be efficiently applied to high resolution maps due to the use of the
fast spherical harmonics transformation. Thirdly, the constructed fields,
E(γ^) and B(γ^), are scalar
fields. For this reason various techniques developed to deal with temperature
anisotropy maps can be directly applied to analyze these fields. As a concrete
example, we construct and analyze an unbiased estimator for the power spectrum
of the B-mode of polarization CℓBB. Basing our results on the
performance of this estimator, we discuss the RGW detection ability of two
future ground-based CMB experiments, QUIET and POLARBEAR.Comment: 43 pages, 15 figures, 1 table. The finial version, will appear in PR