11 research outputs found

    Exhaled nitric oxide and its relationship to airway responsiveness and atopy in asthma

    Get PDF
    AbstractExhaled nitric oxide (NO) has attracted increasing interest as a non-invasive marker of airway inflammation. The purpose of this study was to determine whether exhaled nitric oxide in subjects with asthma varied according to their atopic status and to examine its correlation with airway hyperresponsiveness and lung function measurements.Forty patients with asthma and 13 controls participated in the study. Nitric oxide was measured on three occasions with intervals of at least 3 days, using a chemiluminescence method. Airway responsiveness was assessed with methacholine challenge and lung function measurements were made. All subjects recorded peak expiratory flow and kept a symptom diary during a 17-day period. There was no significant difference in lung function measurements, peak expiratory flow or symptom score between the two asthma groups. Atopic patients with asthma had a significantly higher mean amount of exhaled NO than non-atopic subjects with asthma (162 ± 68 vs. 113 ± 55 nl min−1; P = 0·03) and the control group (88 ± 52 nl min−1; P = 0·004). No significant difference was found in the amount of exhaled NO between non-atopic patients with asthma and the controls. In atopic subjects with asthma the mean exhaled NO was significantly correlated to the dose-response slope for methacholine (r = −0·52; P = 0·02), while no such correlation was found in the non-atopic group.In conclusion; in this study, atopic subjects with asthma had higher levels of exhaled NO than non-atopic subjects. Atopic status should be taken into account when measuring levels of exhaled NO in subjects with asthma

    Eight-year follow-up of airway hyperresponsiveness in patients with primary Sjögren’s syndrome

    Get PDF
    Objective: To evaluate in a longitudinal study the influence of airway hyperresponsiveness (AHR) on lung function in patients with primary Sjögren’s syndrome (pSS). Methods: Lung function was studied over an eight-year period in 15 patients who fulfilled the Copenhagen criteria for primary Sjögren’s syndrome and who were covered in our earlier published study on AHR in patients with Sjögren’s syndrome. Standard spirometry and measurements of lung volumes, diffusing capacity (DLCO), and AHR to methacholine were performed. Results: A significant decline over time was found in total lung capacity (TLC), vital capacity (VC), forced vital capacity (FVC), functional residual capacity (FRC), and expiratory midflows (FEF50). A sign of small airway obstruction (decrease in FEF50) at entry correlated with VC at follow-up (r = .8, P < .003), and the individual change in FEF50 during the observation period correlated with the individual change in VC (r = .6, P < .05). Six patients had increased AHR, and three of them had decreased DLCO. Six of the patients progressively reduced DLCO over time, and five of them had spirometric signs of increased small airway obstruction. Conclusions: During this eight-year follow-up we observed that one-third of the patients with pSS developed a significant reduction in lung function. Our findings suggest that small airways obstruction and AHR are associated with reduction of VC and development of impaired DLCO as a sign of interstitial lung disease in this group of patients
    corecore