1,319 research outputs found
Evaluation of LANDSAT-2 (ERTS) images applied to geologic structures and mineral resources of South America
The author has identified the following significant results. The Salar of Coposa is located in northern Chile along the frontier with Bolivia. The surface was divided into six general classes of materials. Analysis of LANDSAT image 1243-14001 by use of interactive multispectral computer (Image 100) enabled accurate repetition of these general classes based on reflectance. The Salar of Uyuni is the largest of the South American evaporite deposits. Using image 1243-13595, and parallel piped computer classification of reflectance units, the Salar was divided into nine classes ranging from deep to shallow water, water over salt, salt saturated with water, and several classes of dry salt
Cosmic-ray driven dynamo in galaxies
We present recent developments of global galactic-scale numerical models of
the Cosmic Ray (CR) driven dynamo, which was originally proposed by Parker
(1992). We conduct a series of direct CR+MHD numerical simulations of the
dynamics of the interstellar medium (ISM), composed of gas, magnetic fields and
CR components. We take into account CRs accelerated in randomly distributed
supernova (SN) remnants, and assume that SNe deposit small-scale, randomly
oriented, dipolar magnetic fields into the ISM. The amplification timescale of
the large-scale magnetic field resulting from the CR-driven dynamo is
comparable to the galactic rotation period. The process efficiently converts
small-scale magnetic fields of SN-remnants into galactic-scale magnetic fields.
The resulting magnetic field structure resembles the X-shaped magnetic fields
observed in edge-on galaxies.Comment: 6 pages, 4 figures, to appear in Proceedings of IAU Symp. 274,
Advances in Plasma Astrophysics, ed. A. Bonanno, E. de Gouveia dal Pino and
A. Kosoviche
Lineaments and Mineral Occurrences in Pennsylvania
The author has identified the following significant results. A conservative lineament map of Pennsylvania interpreted from ERTS-1 channel 7 (infrared) imagery and Skylab photography was compared with the distribution of known metallic mines and mineral occurrences. Of 383 known mineral occurrences, 116 show a geographical association to 1 km wide lineaments, another 24 lie at the intersection of two lineaments, and one lies at the intersection of three lineaments. The Perkiomen Creek lineament in the Triassic Basin is associated with 9 Cu-Fe occurrences. Six Pb-Zn occurrences are associated with the Tyrone-Mount Union lineament. Thirteen other lineaments are associated with 3, 4, or 5 mineral occurrences each
Element specific characterization of heterogeneous magnetism in (Ga,Fe)N films
We employ x-ray spectroscopy to characterize the distribution and magnetism
of particular alloy constituents in (Ga,Fe)N films grown by metal organic vapor
phase epitaxy. Furthermore, photoelectron microscopy gives direct evidence for
the aggregation of Fe ions, leading to the formation of Fe-rich nanoregions
adjacent to the samples surface. A sizable x-ray magnetic circular dichroism
(XMCD) signal at the Fe L-edges in remanence and at moderate magnetic fields at
300 K links the high temperature ferromagnetism with the Fe(3d) states. The
XMCD response at the N K-edge highlights that the N(2p) states carry
considerable spin polarization. We conclude that FeN{\delta} nanocrystals, with
\delta > 0.25, stabilize the ferromagnetic response of the films.Comment: 4 pages, 3 figures, 1 tabl
Enhancement of the spin-gap in fully occupied two-dimensional Landau levels
Polarization-resolved magneto-luminescence, together with simultaneous
magneto-transport measurements, have been performed on a two-dimensional
electron gas (2DEG) confined in CdTe quantum well in order to determine the
spin-splitting of fully occupied electronic Landau levels, as a function of the
magnetic field (arbitrary Landau level filling factors) and temperature. The
spin splitting, extracted from the energy separation of the \sigma+ and \sigma-
transitions, is composed of the ordinary Zeeman term and a many-body
contribution which is shown to be driven by the spin-polarization of the 2DEG.
It is argued that both these contributions result in a simple, rigid shift of
Landau level ladders with opposite spins.Comment: 4 pages, 3 figure
Long exciton spin memory in coupled quantum wells
Spatially indirect excitons in a coupled quantum well structure were studied
by means of polarization and time resolved photoluminescence. A strong degree
of circular polarization (> 50%) in emission was achieved when the excitation
energy was tuned into resonance with the direct exciton state. The indirect
transition remained polarized several tens of nanoseconds after the pumping
laser pulse, demonstrating directly a very long relaxation time of exciton
spin. The observed spin memory effect exceeds the radiative lifetime of the
indirect excitons.Comment: 4 pages, 2 figure
PIERNIK mhd code - a multi-fluid, non-ideal extension of the relaxing-TVD scheme (I)
We present a new multi-fluid, grid MHD code PIERNIK, which is based on the
Relaxing TVD scheme. The original scheme has been extended by an addition of
dynamically independent, but interacting fluids: dust and a diffusive cosmic
ray gas, described within the fluid approximation, with an option to add other
fluids in an easy way. The code has been equipped with shearing-box boundary
conditions, and a selfgravity module, Ohmic resistivity module, as well as
other facilities which are useful in astrophysical fluid-dynamical simulations.
The code is parallelized by means of the MPI library. In this paper we shortly
introduce basic elements of the Relaxing TVD MHD algorithm, following Trac &
Pen (2003) and Pen et al. (2003), and then focus on the conservative
implementation of the shearing box model, constructed with the aid of the
Masset's (2000) method. We present results of a test example of a formation of
a gravitationally bounded object (planet) in a self-gravitating and
differentially rotating fluid.Comment: 6 pages, 3 figures, conference proceedings of the Torun Exoplanets
200
The impact of skull bone intensity on the quality of compressed CT neuro images
International audienceThe increasing use of technologies such as CT and MRI, along with a continuing improvement in their resolution, has contributed to the explosive growth of digital image data being generated. Medical communities around the world have recognized the need for efficient storage, transmission and display of medical images. For example, the Canadian Association of Radiologists (CAR) has recommended compression ratios for various modalities and anatomical regions to be employed by lossy JPEG and JPEG2000 compression in order to preserve diagnostic quality. Here we investigate the effects of the sharp skull edges present in CT neuro images on JPEG and JPEG2000 lossy compression. We conjecture that this atypical effect is caused by the sharp edges between the skull bone and the background regions as well as between the skull bone and the interior regions. These strong edges create large wavelet coefficients that consume an unnecessarily large number of bits in JPEG2000 compression because of its bitplane coding scheme, and thus result in reduced quality at the interior region, which contains most diagnostic information in the image. To validate the conjecture, we investigate a segmentation based compression algorithm based on simple thresholding and morphological operators. As expected, quality is improved in terms of PSNR as well as the structural similarity (SSIM) image quality measure, and its multiscale (MS-SSIM) and informationweighted (IW-SSIM) versions. This study not only supports our conjecture, but also provides a solution to improve the performance of JPEG and JPEG2000 compression for specific types of CT images
Forming and confining of dipolar excitons by quantizing magnetic fields
We show that a magnetic field perpendicular to an AlGaAs/GaAs coupled quantum
well efficiently traps dipolar excitons and leads to the stabilization of the
excitonic formation and confinement in the illumination area. Hereby, the
density of dipolar excitons is remarkably enhanced up to . By means of Landau level spectroscopy we study the density of excess
holes in the illuminated region. Depending on the excitation power and the
applied electric field, the hole density can be tuned over one order of
magnitude up to - a value comparable with typical
carrier densities in modulation-doped structures.Comment: 4.3 Pages, 4 Figure
- …
