1,319 research outputs found

    Evaluation of LANDSAT-2 (ERTS) images applied to geologic structures and mineral resources of South America

    Get PDF
    The author has identified the following significant results. The Salar of Coposa is located in northern Chile along the frontier with Bolivia. The surface was divided into six general classes of materials. Analysis of LANDSAT image 1243-14001 by use of interactive multispectral computer (Image 100) enabled accurate repetition of these general classes based on reflectance. The Salar of Uyuni is the largest of the South American evaporite deposits. Using image 1243-13595, and parallel piped computer classification of reflectance units, the Salar was divided into nine classes ranging from deep to shallow water, water over salt, salt saturated with water, and several classes of dry salt

    Cosmic-ray driven dynamo in galaxies

    Get PDF
    We present recent developments of global galactic-scale numerical models of the Cosmic Ray (CR) driven dynamo, which was originally proposed by Parker (1992). We conduct a series of direct CR+MHD numerical simulations of the dynamics of the interstellar medium (ISM), composed of gas, magnetic fields and CR components. We take into account CRs accelerated in randomly distributed supernova (SN) remnants, and assume that SNe deposit small-scale, randomly oriented, dipolar magnetic fields into the ISM. The amplification timescale of the large-scale magnetic field resulting from the CR-driven dynamo is comparable to the galactic rotation period. The process efficiently converts small-scale magnetic fields of SN-remnants into galactic-scale magnetic fields. The resulting magnetic field structure resembles the X-shaped magnetic fields observed in edge-on galaxies.Comment: 6 pages, 4 figures, to appear in Proceedings of IAU Symp. 274, Advances in Plasma Astrophysics, ed. A. Bonanno, E. de Gouveia dal Pino and A. Kosoviche

    Lineaments and Mineral Occurrences in Pennsylvania

    Get PDF
    The author has identified the following significant results. A conservative lineament map of Pennsylvania interpreted from ERTS-1 channel 7 (infrared) imagery and Skylab photography was compared with the distribution of known metallic mines and mineral occurrences. Of 383 known mineral occurrences, 116 show a geographical association to 1 km wide lineaments, another 24 lie at the intersection of two lineaments, and one lies at the intersection of three lineaments. The Perkiomen Creek lineament in the Triassic Basin is associated with 9 Cu-Fe occurrences. Six Pb-Zn occurrences are associated with the Tyrone-Mount Union lineament. Thirteen other lineaments are associated with 3, 4, or 5 mineral occurrences each

    Element specific characterization of heterogeneous magnetism in (Ga,Fe)N films

    Full text link
    We employ x-ray spectroscopy to characterize the distribution and magnetism of particular alloy constituents in (Ga,Fe)N films grown by metal organic vapor phase epitaxy. Furthermore, photoelectron microscopy gives direct evidence for the aggregation of Fe ions, leading to the formation of Fe-rich nanoregions adjacent to the samples surface. A sizable x-ray magnetic circular dichroism (XMCD) signal at the Fe L-edges in remanence and at moderate magnetic fields at 300 K links the high temperature ferromagnetism with the Fe(3d) states. The XMCD response at the N K-edge highlights that the N(2p) states carry considerable spin polarization. We conclude that FeN{\delta} nanocrystals, with \delta > 0.25, stabilize the ferromagnetic response of the films.Comment: 4 pages, 3 figures, 1 tabl

    Enhancement of the spin-gap in fully occupied two-dimensional Landau levels

    Full text link
    Polarization-resolved magneto-luminescence, together with simultaneous magneto-transport measurements, have been performed on a two-dimensional electron gas (2DEG) confined in CdTe quantum well in order to determine the spin-splitting of fully occupied electronic Landau levels, as a function of the magnetic field (arbitrary Landau level filling factors) and temperature. The spin splitting, extracted from the energy separation of the \sigma+ and \sigma- transitions, is composed of the ordinary Zeeman term and a many-body contribution which is shown to be driven by the spin-polarization of the 2DEG. It is argued that both these contributions result in a simple, rigid shift of Landau level ladders with opposite spins.Comment: 4 pages, 3 figure

    Long exciton spin memory in coupled quantum wells

    Full text link
    Spatially indirect excitons in a coupled quantum well structure were studied by means of polarization and time resolved photoluminescence. A strong degree of circular polarization (> 50%) in emission was achieved when the excitation energy was tuned into resonance with the direct exciton state. The indirect transition remained polarized several tens of nanoseconds after the pumping laser pulse, demonstrating directly a very long relaxation time of exciton spin. The observed spin memory effect exceeds the radiative lifetime of the indirect excitons.Comment: 4 pages, 2 figure

    PIERNIK mhd code - a multi-fluid, non-ideal extension of the relaxing-TVD scheme (I)

    Get PDF
    We present a new multi-fluid, grid MHD code PIERNIK, which is based on the Relaxing TVD scheme. The original scheme has been extended by an addition of dynamically independent, but interacting fluids: dust and a diffusive cosmic ray gas, described within the fluid approximation, with an option to add other fluids in an easy way. The code has been equipped with shearing-box boundary conditions, and a selfgravity module, Ohmic resistivity module, as well as other facilities which are useful in astrophysical fluid-dynamical simulations. The code is parallelized by means of the MPI library. In this paper we shortly introduce basic elements of the Relaxing TVD MHD algorithm, following Trac & Pen (2003) and Pen et al. (2003), and then focus on the conservative implementation of the shearing box model, constructed with the aid of the Masset's (2000) method. We present results of a test example of a formation of a gravitationally bounded object (planet) in a self-gravitating and differentially rotating fluid.Comment: 6 pages, 3 figures, conference proceedings of the Torun Exoplanets 200

    The impact of skull bone intensity on the quality of compressed CT neuro images

    Get PDF
    International audienceThe increasing use of technologies such as CT and MRI, along with a continuing improvement in their resolution, has contributed to the explosive growth of digital image data being generated. Medical communities around the world have recognized the need for efficient storage, transmission and display of medical images. For example, the Canadian Association of Radiologists (CAR) has recommended compression ratios for various modalities and anatomical regions to be employed by lossy JPEG and JPEG2000 compression in order to preserve diagnostic quality. Here we investigate the effects of the sharp skull edges present in CT neuro images on JPEG and JPEG2000 lossy compression. We conjecture that this atypical effect is caused by the sharp edges between the skull bone and the background regions as well as between the skull bone and the interior regions. These strong edges create large wavelet coefficients that consume an unnecessarily large number of bits in JPEG2000 compression because of its bitplane coding scheme, and thus result in reduced quality at the interior region, which contains most diagnostic information in the image. To validate the conjecture, we investigate a segmentation based compression algorithm based on simple thresholding and morphological operators. As expected, quality is improved in terms of PSNR as well as the structural similarity (SSIM) image quality measure, and its multiscale (MS-SSIM) and informationweighted (IW-SSIM) versions. This study not only supports our conjecture, but also provides a solution to improve the performance of JPEG and JPEG2000 compression for specific types of CT images

    Forming and confining of dipolar excitons by quantizing magnetic fields

    Full text link
    We show that a magnetic field perpendicular to an AlGaAs/GaAs coupled quantum well efficiently traps dipolar excitons and leads to the stabilization of the excitonic formation and confinement in the illumination area. Hereby, the density of dipolar excitons is remarkably enhanced up to 1011cm2\sim 10^{11} cm^{-2}. By means of Landau level spectroscopy we study the density of excess holes in the illuminated region. Depending on the excitation power and the applied electric field, the hole density can be tuned over one order of magnitude up to 2.5\sim 2.5 1011cm210^{11} cm^{-2} - a value comparable with typical carrier densities in modulation-doped structures.Comment: 4.3 Pages, 4 Figure
    corecore