21 research outputs found
Autoinhibition of TBCB regulates EB1-mediated microtubule dynamics
Tubulin cofactors (TBCs) participate in the folding, dimerization, and dissociation pathways of the tubulin dimer. Among them, TBCB and TBCE are two CAP-Gly domain-containing proteins that interact and dissociate the tubulin dimer. Here we show how TBCB localizes at spindle and midzone microtubules during mitosis. Furthermore, the motif DEI/M-COO– present in TBCB, which is similar to the EEY/F-COO– element characteristic of EB proteins, CLIP-170, and α-tubulin, is required for TBCE–TBCB heterodimer formation and thus for tubulin dimer dissociation. This motif is responsible for TBCB autoinhibition, and our analysis suggests that TBCB is a monomer in solution. Mutants of TBCB lacking this motif are derepressed and induce microtubule depolymerization through an interaction with EB1 associated to microtubule tips. TBCB is also able to bind to the chaperonin complex CCT containing α-tubulin, suggesting that it could escort tubulin to facilitate its folding and dimerization, recycling or degradation
Tubulin binding cofactor C (TBCC) suppresses tumor growth and enhances chemosensitivity in human breast cancer cells
<p>Abstract</p> <p>Background</p> <p>Microtubules are considered major therapeutic targets in patients with breast cancer. In spite of their essential role in biological functions including cell motility, cell division and intracellular transport, microtubules have not yet been considered as critical actors influencing tumor cell aggressivity. To evaluate the impact of microtubule mass and dynamics on the phenotype and sensitivity of breast cancer cells, we have targeted tubulin binding cofactor C (TBCC), a crucial protein for the proper folding of α and β tubulins into polymerization-competent tubulin heterodimers.</p> <p>Methods</p> <p>We developed variants of human breast cancer cells with increased content of TBCC. Analysis of proliferation, cell cycle distribution and mitotic durations were assayed to investigate the influence of TBCC on the cell phenotype. <it>In vivo </it>growth of tumors was monitored in mice xenografted with breast cancer cells. The microtubule dynamics and the different fractions of tubulins were studied by time-lapse microscopy and lysate fractionation, respectively. <it>In vitro </it>sensitivity to antimicrotubule agents was studied by flow cytometry. <it>In vivo </it>chemosensitivity was assayed by treatment of mice implanted with tumor cells.</p> <p>Results</p> <p>TBCC overexpression influenced tubulin fraction distribution, with higher content of nonpolymerizable tubulins and lower content of polymerizable dimers and microtubules. Microtubule dynamicity was reduced in cells overexpressing TBCC. Cell cycle distribution was altered in cells containing larger amounts of TBCC with higher percentage of cells in G2-M phase and lower percentage in S-phase, along with slower passage into mitosis. While increased content of TBCC had little effect on cell proliferation <it>in vitro</it>, we observed a significant delay in tumor growth with respect to controls when TBCC overexpressing cells were implanted as xenografts <it>in vivo</it>. TBCC overexpressing variants displayed enhanced sensitivity to antimicrotubule agents both <it>in vitro </it>and in xenografts.</p> <p>Conclusion</p> <p>These results underline the essential role of fine tuned regulation of tubulin content in tumor cells and the major impact of dysregulation of tubulin dimer content on tumor cell phenotype and response to chemotherapy. A better understanding of how the microtubule cytoskeleton is dysregulated in cancer cells would greatly contribute to a better understanding of tumor cell biology and characterisation of resistant phenotypes.</p
Faithful chaperones
This review describes the properties of some rare eukaryotic chaperones that each assist in the folding of only one target protein. In particular, we describe (1) the tubulin cofactors, (2) p47, which assists in the folding of collagen, (3) α-hemoglobin stabilizing protein (AHSP), (4) the adenovirus L4-100 K protein, which is a chaperone of the major structural viral protein, hexon, and (5) HYPK, the huntingtin-interacting protein. These various-sized proteins (102–1,190 amino acids long) are all involved in the folding of oligomeric polypeptides but are otherwise functionally unique, as they each assist only one particular client. This raises a question regarding the biosynthetic cost of the high-level production of such chaperones. As the clients of faithful chaperones are all abundant proteins that are essential cellular or viral components, it is conceivable that this necessary metabolic expenditure withstood evolutionary pressure to minimize biosynthetic costs. Nevertheless, the complexity of the folding pathways in which these chaperones are involved results in error-prone processes. Several human disorders associated with these chaperones are discussed
Crystal Structure of Protein MJ1225 from Methanocaldococcus jannaschii, a putative archaeal homolog of g-AMPK.
Role of cofactors B (TBCB) and E (TBCE) in tubulin heterodimer dissociation
Tubulin folding cofactors B (TBCB) and E (TBCE) are α-tubulin binding proteins that, together with Arl2 and cofactors D (TBCD), A (TBCA or p14) and C (TBCC), participate in tubulin biogenesis. TBCD and TBCE have also been implicated in microtubule dynamics through regulation of tubulin heterodimer dissociation. Understanding the in vivo function of these proteins will shed light on the Kenny–Caffey/Sanjad–Sakati syndrome, an important human disorder associated with TBCE. Here we show that, when overexpressed, TBCB depolymerizes microtubules. We found that this function is based on the ability of TBCB to form a binary complex with TBCE that greatly enhances the efficiency of this cofactor to dissociate tubulin in vivo and in vitro. We also show that TBCE, TBCB and α-tubulin form a ternary complex after heterodimer dissociation, whereas the free β-tubulin subunit is recovered by TBCA. These complexes might serve to escort α-tubulin towards degradation or recycling, depending on the cell requirements.D.K. and G.C. were supported by fellowships from the Universidad de Cantabria and the Fundación Marqués de Valdecilla-IFIMAV, respectively. J.B. and this work were supported by grants from the Spanish Ministry of Science and Technology to J.C.Z. (BMC2001-0618 and BFU2004-01212) and from the Fundación Marqués de Valdecilla-IFIMAV (A/36/01, A/32/03 and API/05/1/8).Peer reviewe
Crystal Structure of the CBS domain pair of protein MJ0100 in complex with 5 -methylthioadenosine and S-adenosyl-L-methionine.
Crystal Structure of the CBS domain pair of protein MJ0100 in complex with 5 -methylthioadenosine and S-adenosyl-L-methionine.
Crystal Structure of the CBS domain pair of protein MJ0100 in complex with 5 -methylthioadenosine and S-adenosyl-L-methionine
Blood β-Synuclein and Neurofilament Light Chain During the Course of Prion Disease
Background and ObjectivesFor early diagnosis and disease monitoring of neurodegenerative diseases (NDs), reliable blood biomarkers are needed. Elevated levels of neurofilament light chain protein (NfL), an axonal damage marker, have been described across different NDs, with highest values in prion diseases and amyotrophic lateral sclerosis (ALS). Synaptic degeneration is a common early feature in most NDs and seems to precede neuronal degeneration in prion disease. However, synaptic markers in blood are still missing. Here, we investigated whether the brain-specific protein β-synuclein might be a suitable blood biomarker for early diagnosis and evaluation of synaptic integrity in prion disease.MethodsWe analyzed blood β-synuclein with a newly established digital ELISA and NfL with a single-molecule array in samples obtained from human participants and prion and ALS animal models. Furthermore, β-synuclein was investigated in brain tissue of individuals with Creutzfeldt-Jakob disease (CJD) and controls.ResultsWe investigated 308 patients, including 129 cases with prion disease, 8 presymptomatic PRNP variation carriers, 60 with ALS, 68 with other ND, and 43 control patients. In CJD symptomatic cases, β-synuclein and NfL were markedly increased compared to all other diagnostic groups (p < 0.001). In the large majority of presymptomatic PRNP variation carriers, β-synuclein and NfL levels were within normal ranges. In prion disease animal models, β-synuclein and NfL displayed normal levels in the presymptomatic phase with a sudden elevation at disease onset and a plateau in the symptomatic phase. In contrast to NfL, β-synuclein was not elevated in either symptomatic patients with ALS or an ALS animal model. In the discrimination between prion disease and all other groups, β-synuclein (area under the curve 0.97, 95% CI 0.94-0.99, p < 0.001) was superior to NfL (area under the curve 0.91, 95% CI 0.88-0.94, p < 0.001). In addition, brain tissue β-synuclein showed significantly reduced levels in patients with CJD compared to control patients (p < 0.001).DiscussionBlood β-synuclein was significantly elevated in patients with CJD, reflecting ongoing synaptic damage, and showed good discriminative characteristics. We therefore propose it as a candidate blood marker for early diagnosis and monitoring of synaptic integrity in prion disease.Classification of EvidenceThis study provides Class III evidence that serum β-synuclein concentration accurately distinguishes patients with symptomatic CJD from controls
