3,273 research outputs found
Influence of s-d scattering on the electron density of states in ferromagnet/superconductor bilayer
We study the dependence of the electronic density of states (DOS) on the
distance from the boundary for a ferromagnet/superconductor bilayer. We
calculate the electron density of states in such structure taking into account
the two-band model of the ferromagnet (FM) with conducting s and localized d
electrons and a simple s-wave superconductor (SC). It is demonstrated that due
to the electron s-d scattering in the ferromagnetic layer in the third order of
s-d scattering parameter the oscillation of the density of states has larger
period and more drastic decrease in comparison with the oscillation period for
the electron density of states in the zero order.Comment: 5 pages, 3 figure
Shot noise in carbon nanotube based Fabry-Perot interferometers
We report on shot noise measurements in carbon nanotube based Fabry-Perot
electronic interferometers. As a consequence of quantum interferences, the
noise power spectral density oscillates as a function of the voltage applied to
the gate electrode. The quantum shot noise theory accounts for the data
quantitatively. It allows to confirm the existence of two nearly degenerate
orbitals. At resonance, the transmission of the nanotube approaches unity, and
the nanotube becomes noiseless, as observed in quantum point contacts. In this
weak backscattering regime, the dependence of the noise on the backscattering
current is found weaker than expected, pointing either to electron-electron
interactions or to weak decoherence
Conserved spin and orbital phase along carbon nanotubes connected with multiple ferromagnetic contacts
We report on spin dependent transport measurements in carbon nanotubes based
multi-terminal circuits. We observe a gate-controlled spin signal in non-local
voltages and an anomalous conductance spin signal, which reveal that both the
spin and the orbital phase can be conserved along carbon nanotubes with
multiple ferromagnetic contacts. This paves the way for spintronics devices
exploiting both these quantum mechanical degrees of freedom on the same
footing.Comment: 8 pages - minor differences with published versio
Magnetic properties of Ruddlesden-Popper phases SrY(FeNi)O: A combined experimental and theoretical investigation
We present a comprehensive study of the magnetic properties of
SrY(FeNi)O ().
Experimentally, the magnetic properties are investigated using superconducting
quantum interference device (SQUID) magnetometry and neutron powder diffraction
(NPD). This is complemented by the theoretical study based on density
functional theory as well as the Heisenberg exchange parameters. Experimental
results show an increase in the N\'eel temperature () with the increase of
Y concentrations and O occupancy. The NPD data reveals all samples are
antiferromagnetically ordered at low temperatures, which has been confirmed by
our theoretical simulations for the selected samples. Our first-principles
calculations suggest that the 3D magnetic order is stabilized due to finite
inter-layer exchange couplings. The latter give rise to a finite inter-layer
spin correlations which disappear above the
Composite excitation of Josephson phase and spin waves in Josephson junctions with ferromagnetic insulator
Coupling of Josephson-phase and spin-waves is theoretically studied in a
superconductor/ferromagnetic insulator/superconductor (S/FI/S) junction.
Electromagnetic (EM) field inside the junction and the Josephson current
coupled with spin-waves in FI are calculated by combining Maxwell and
Landau-Lifshitz-Gilbert equations. In the S/FI/S junction, it is found that the
current-voltage (I-V) characteristic shows two resonant peaks. Voltages at the
resonant peaks are obtained as a function of the normal modes of EM field,
which indicates a composite excitation of the EM field and spin-waves in the
S/FI/S junction. We also examine another type of junction, in which a
nonmagnetic insulator (I) is located at one of interfaces between S and FI. In
such a S/I/FI/S junction, three resonant peaks appear in the I-V curve, since
the Josephson-phase couples to the EM field in the I layer.Comment: 16 pages, 5 figure
Physiological Basis of the Radioisotope Renogram
A model elucidating the relationships between blood radioactivity, the renogram curve, and urine radioactivity, as a function of time, is derived. Estimation procedures have been devised which use the data from three curves at once to estimate parameters common to the three curves, and which also estimate parameters unique to the individual curves. A program has been written for the RPC 4000 computer to perform the estimation. It was found that some model in which six different exponential parameters could be justified instead of the two proposed by the model could provide a significantly better fit of the data (P \u3c .001), but that the fit under the hypothesis was still quite good
Order parameter oscillations in Fe/Ag/Bi2Sr2CaCu2O{8+delta} tunnel junctions
We have performed temperature dependent tunneling conductance spectroscopy on
Fe/Ag/Bi2Sr2CaCu2O8 (BSCCO) planar junctions. The multilayered Fe
counterelectrode was designed to probe the proximity region of the ab-plane of
BSCCO. The spectra manifested a coherent oscillatory behavior with magnitude
and sign dependent on the energy, decaying with increasing distance from the
junction barrier, in conjunction with the theoretical predictions involving
d-wave superconductors coupled with ferromagnets. The conductance oscillates in
antiphase at E = 0 and E = +/-Delta. Spectral features characteristic to a
broken time-reversal pairing symmetry are detected and they do not depend on
the geometrical characteristics of the ferromagnetic film.Comment: 4 pages and 4 figures Submitted to Physical Review Letter
The first direct measurement of ¹²C (¹²C,n) ²³Mg at stellar energies
Neutrons produced by the carbon fusion reaction ¹²C(¹²C,n)²³Mg play an important role in stellar nucleosynthesis. However, past studies have shown large discrepancies between experimental data and theory, leading to an uncertain cross section extrapolation at astrophysical energies. We present the first direct measurement that extends deep into the astrophysical energy range along with a new and improved extrapolation technique based on experimental data from the mirror reaction ¹²C(¹²C,p)²³Na. The new reaction rate has been determined with a well-defined uncertainty that exceeds the precision required by astrophysics models. Using our constrained rate, we find that ¹²C(¹²C,n)²³Mg is crucial to the production of Na and Al in Pop-III Pair Instability Supernovae. It also plays a non-negligible role in the production of weak s-process elements as well as in the production of the important galacti
Density of states in SF bilayers with arbitrary strength of magnetic scattering
We developed the self-consistent method for the calculation of the density of
states in the SF bilayers. It based on the quasi-classical Usadel
equations and takes into account the suppression of superconductivity in the S
layer due to the proximity effect with the F metal, as well as existing
mechanisms of the spin dependent electron scattering. We demonstrate that the
increase of the spin orbit or spin flip electron scattering rates results in
completely different transformations of at the free F layer
interface. The developed formalism has been applied for the interpretation of
the available experimental data.Comment: 5 pages, 8 figure
- …
