7,089 research outputs found

    ON THE OSCILLATION SPECTRA OF ULTRA COMPACT STARS

    Full text link
    Quasinormal modes of ultra compact stars with uniform energy density have been calculated. For less compact stars, there is only one very slowly damped polar mode (corresponding to the Kelvin f-mode) for each spherical harmonic index ll. Further long-lived modes become possible for a sufficiently compact star (roughly when M/R≄1/3M/R \ge 1/3). We compare the characteristic frequencies of these resonant polar modes to the axial modes first found by Chandrasekhar and Ferrari [{\em Proc. Roy. Soc. London A} {\bf 434} 449 (1991)]. We find that the two spectra approach each other as the star is made more compact. The oscillation frequencies of the corresponding polar and axial modes agree to within a percent for stars more compact than M/R=0.42M/R = 0.42. At the same time, the damping times are slightly different. The results illustrate that there is no real difference between the origin of these axial and polar modes: They are essentially spacetime modes.Comment: 13 pages, LATEX format, 25Kb, 2 postscript figures, Proc. Roy. Soc. London in pres

    The Riemann-Hilbert problem associated with the quantum Nonlinear Schrodinger equation

    Get PDF
    We consider the dynamical correlation functions of the quantum Nonlinear Schrodinger equation. In a previous paper we found that the dynamical correlation functions can be described by the vacuum expectation value of an operator-valued Fredholm determinant. In this paper we show that a Riemann-Hilbert problem can be associated with this Fredholm determinant. This Riemann-Hilbert problem formulation permits us to write down completely integrable equations for the Fredholm determinant and to perform an asymptotic analysis for the correlation function.Comment: 21 pages, Latex, no figure

    Data dependent energy modelling for worst case energy consumption analysis

    Get PDF
    Safely meeting Worst Case Energy Consumption (WCEC) criteria requires accurate energy modeling of software. We investigate the impact of instruction operand values upon energy consumption in cacheless embedded processors. Existing instruction-level energy models typically use measurements from random input data, providing estimates unsuitable for safe WCEC analysis. We examine probabilistic energy distributions of instructions and propose a model for composing instruction sequences using distributions, enabling WCEC analysis on program basic blocks. The worst case is predicted with statistical analysis. Further, we verify that the energy of embedded benchmarks can be characterised as a distribution, and compare our proposed technique with other methods of estimating energy consumption

    A study of 15N14N isotopic exchange over cobalt molybdenum nitrides

    Get PDF
    The 14N/15N isotopic exchange pathways over Co3Mo3N, a material of interest as an ammonia synthesis catalyst and for the development of nitrogen transfer reactions, have been investigated. Both the homomolecular and heterolytic exchange processes have been studied, and it has been shown that lattice nitrogen species are exchangeable. The exchange behavior was found to be a strong function of pretreatment with ca. 25% of lattice N atoms being exchanged after 40 min at 600 °C after N2 pretreatment at 700 °C compared to only 6% following similar Ar pretreatment. This observation, for which the potential contribution of adsorbed N species can be discounted, is significant in terms of the application of this material. In the case of the Co6Mo6N phase, regeneration to Co3Mo3N under 15N2 at 600 °C occurs concurrently with 14N15N formation. These observations demonstrate the reactivity of nitrogen in the Co–Mo–N system to be a strong function of pretreatment and worthy of further consideration

    Flavor-oscillation clocks, continuous quantum measurements and a violation of Einstein equivalence principle

    Get PDF
    The relation between Einstein equivalence principle and a continuous quantum measurement is analyzed in the context of the recently proposed flavor-oscillation clocks, an idea pioneered by Ahluwalia and Burgard (Gen. Rel Grav. Errata 29, 681 (1997)). We will calculate the measurement outputs if a flavor-oscillation clock, which is immersed in a gravitational field, is subject to a continuous quantum measurement. Afterwards, resorting to the weak equivalence principle, we obtain the corresponding quantities in a freely falling reference frame. Finally, comparing this last result with the measurement outputs that would appear in a Minkowskian spacetime it will be found that they do not coincide, in other words, we have a violation of Einstein equivalence principle. This violation appears in two different forms, namely: (i) the oscillation frequency in a freely falling reference frame does not match with the case predicted by general relativity, a feature previously obtained by Ahluwalia; (ii) the probability distribution of the measurement outputs, obtained by an observer in a freely falling reference frame, does not coincide with the results that would appear in the case of a Minkowskian spacetime.Comment: 16 pages, accepted in Mod. Phys. Letts.

    Magnetic Phase Transitions in the double spin-chains compound LiCu2O2\rm LiCu_2O_2

    Full text link
    We report high-resolution x-ray diffraction, muon-spin-rotation spectroscopic and specific heat measurements in the double spin-chains compound LiCu2O2\rm LiCu_2O_2. The x-ray diffraction results show that the crystal structure of LiCu2O2\rm LiCu_2O_2 ~is orthorhombic down to T=10K. Anisotropic line-broadening of the diffraction peaks is observed, indicating disorder along the spin chains. Muon spin relaxation and specific heat measurements show that LiCu2O2\rm LiCu_2O_2 \~undergoes a phase transition to a magnetic ordered state at T1∌24K\rm T_1\sim24K. The specific heat data exhibits a second λ\rm \lambda-like peak at T2∌22.5K\rm T_2\sim22.5 K, which increases with increasing magnetic field similarly way to that found in spin-ladder compounds.Comment: 6 pages, 6 fifures, to appear in Physica

    Gravitational Radiation from the radial infall of highly relativistic point particles into Kerr black holes

    Full text link
    In this paper, we consider the gravitational radiation generated by the collision of highly relativistic particles with rotating Kerr black holes. We use the Sasaki-Nakamura formalism to compute the waveform, energy spectra and total energy radiated during this process. We show that the gravitational spectrum for high-energy collisions has definite characteristic universal features, which are independent of the spin of the colliding objects. We also discuss possible connections between these results and the black hole-black hole collision at the speed of light process. With these results at hand, we predict that during the high speed collision of a non-rotating hole with a rotating one, about 35% of the total energy can get converted into gravitational waves. Thus, if one is able to produce black holes at the Large Hadron Collider, as much as 35% of the partons' energy should be emitted during the so called balding phase. This energy will be missing, since we don't have gravitational wave detectors able to measure such amplitudes. The collision at the speed of light between one rotating black hole and a non-rotating one or two rotating black holes turns out to be the most efficient gravitational wave generator in the Universe.Comment: 15 pages, REVTEX4. Some comments and references adde
    • 

    corecore