-

View metadata, citation and similar papers at core.ac.uk brought to you byj’f CORE

provided by Explore Bristol Research

-% University of
OPEN (o) ACCESS BRISTOL

Pallister, J., Kerrison, S., Morse, J., & Eder, K. |. (2017). Data dependent
energy modeling for worst case energy consumption analysis. In S. Stuijk
(Ed.), SCOPES '17: Proceedings of the 20th International Workshop on
Software and Compilers for Embedded Systems. (pp. 51-59). Association for
Computing Machinery (ACM). DOI: 10.1145/3078659.3078666

Peer reviewed version

Link to published version (if available):
10.1145/3078659.3078666

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via ACM at http://dl.acm.org/citation.cfm?doid=3078659.3078666. Please refer to any applicable terms of use of
the publisher.

University of Bristol - Explore Bristol Research
General rights
This document is made available in accordance with publisher policies. Please cite only the published

version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html

https://core.ac.uk/display/83929904?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1145/3078659.3078666
http://research-information.bristol.ac.uk/en/publications/data-dependent-energy-modeling-for-worst-case-energy-consumption-analysis(c57990c7-156f-4096-a8bd-5297f292859b).html
http://research-information.bristol.ac.uk/en/publications/data-dependent-energy-modeling-for-worst-case-energy-consumption-analysis(c57990c7-156f-4096-a8bd-5297f292859b).html

Data Dependent Energy Modeling for
Worst Case Energy Consumption Analysis

James Pallister, Steve Kerrison, Jeremy Morse, Kerstin Eder
Department of Computer Science, University of Bristol, BS8 1UB, UK
firstname.lastname @bristol.ac.uk

ABSTRACT

Safely meeting Worst Case Energy Consumption (WCEC) criteria
requires accurate energy modeling of software. We investigate the
impact of instruction operand values upon energy consumption
in cacheless embedded processors. Existing instruction-level en-
ergy models typically use measurements from random input data,
providing estimates unsuitable for safe WCEC analysis.

We examine probabilistic energy distributions of instructions
and propose a model for composing instruction sequences using
distributions, enabling WCEC analysis on program basic blocks. The
worst case is predicted with statistical analysis. Further, we verify
that the energy of embedded benchmarks can be characterised as
a distribution, and compare our proposed technique with other
methods of estimating energy consumption.

1 INTRODUCTION

In real-time embedded systems, execution time of a program must
be bounded. This can provide guarantees that tasks will meet hard
deadlines and the system will function without failure. Recently,
efforts have been made to give upper bounds on program energy
consumption to determine if a task will complete within an avail-
able energy budget [7, 8, 12, 17, 29]. Motivating this research is
the developing Internet of Things (IoT) market, where pervasive
deeply embedded devices require battery- or harvester-based en-
ergy sources. Inaccurate energy consumption estimates can lead
to expensive maintenance, or task failure if power thresholds are
exceeded.

However, existing WCEC analyses often use energy models that
do not explicitly consider the dynamic power drawn by switching
of data in instruction operands, instead producing an upper bound
using averaged random or scaled instruction models [7, 8, 12, 17, 29].
A safe and tightly bound model for WCEC analysis must be close
to the hardware’s actual behaviour, but also give guarantees that it
never under-estimates. Current models have not been analysed in
this context to provide sufficient confidence, and power figures from
manufacturer datasheets are not sufficiently detailed to provide
tight bounds.

Energy modeling allows the energy consumption of software to
be estimated without taking physical measurements. Models may
assign an energy value to each instruction [13, 27], to a predefined
set of processor modes [20], or use a detailed approach that consid-
ers wider processor state, such as the data for each instruction [26].
Although measurements are typically more accurate, models re-
quire no hardware instrumentation, are more versatile and can

256 20.7
224 20.4
192} 20.1
3 g
§ 198 19.5 =
[} [}
S 119.2
5 ool g
118.9
64
118.6
32
118.3
0

0 32 64 96 123 160 192 224 256
Operand 2

Figure 1: Power map of mul instruction for the AVR proces-
sor; total range is 15 % of SoC power.

be used in many situations, such as statically predicting energy
consumption (7, 8, 12, 16, 17, 29], which significantly reduces the
costs and barriers to entry of energy estimation.

Changes in energy consumption caused by different data can
have a significant impact on the overall energy consumption of
a program. Previous work on a 32-bit processor [13] used in this
paper has reported up to 20 % difference in energy consumption
due to data values, while other processors may have up to 50 % of
energy caused by data switching [1]. In our own experiments we
find 15 % difference in a simple 8-bit AVR processor. This device has
no caches, no OS and no high power peripherals. This difference
can be seen in Figure 1, which shows the power for a single cy-
cle, 8-bit multiply instruction in this processor.! The diagram was
constructed by taking hardware measurements for every possible
combination of eight bit inputs. In this paper we choose to focus on
the contribution of operand data to WCEC as it has not been studied
in detail, whereas program length and execution path analysis is
the subject of much prior work. We wish to create energy models
that can account for all sources of energy, including data dependent
sources.

Accounting for data dependent effects in an energy model is a
challenging task, which we split into two parts. Firstly, the energy
effect of an instruction’s manipulation of processor state needs to
be modeled. This is an infeasible amount of data to exhaustively

! All measurements in this paper are taken on physical hardware.

collect. A 32-bit three-operand instruction has 2%

value combinations.

Secondly, a technique is required to derive the energy consump-
tion for a sequence of instructions from such a model. The compo-
sition of data dependent instruction energy models is a particularly
difficult task. The data causing maximum energy consumption for
one instruction may minimise the cost in a subsequent, dependent
instruction. Finding the greatest cost for such sequences requires
searching for inputs that maximise a property after an arbitrary
computation, which is again an infeasibly large task [18]. Over-
approximating by summing the worst possible data dependent en-
ergy consumption of each instruction in a sequence, regardless of
whether such a computation can occur, would lead to a significant
overestimation of the upper bound.

We analyse individual instructions and explore probabilistic mod-
eling approaches to determine the maximum energy consumption
of instruction sequences. This provides a means to analyse complex
programs at the block level. The analysis exposes how data corre-
lations reduce maximum energy. A degenerate case is discovered,
where the sequence of instructions results in a bimodal energy
distribution.

We then explore the effect of data on the maximal energy con-
sumption of programs, performing probabilistic analysis on the
distributions of energy consumption obtained. Data’s effect on en-
tire programs is explored through several methods, finding that
random data forms distributions from which a maximum energy
can be estimated. To the best of our knowledge we believe that
this is the first work to statically estimate energy variability due
to operand data in programs, or to use probabilistic techniques to
model data-dependent energy consumption.

This paper is organised as follows. The next section discusses
related work. Section 3 models individual and sequences of instruc-
tions in the AVR, and Section 4 describes a sequence that causes a
bimodal energy distribution. In Section 5 the effect of data on two
full programs is explored for two processors. Section 6 discusses
the implications of our work, while Section 7 concludes and gives
an outlook on future work.

possible data

2 RELATED WORK

Worst Case Execution Time (WCET) analysis attempts to find an
upper bound on the time taken for an arbitrary program to exe-
cute [9, 30]. A key approach is a method called Implicit Path Enu-
meration Technique (IPET) [15], which estimates an upper bound
given information about a program’s control flow graph. Of re-
cent interest has been work on Worst Case Energy Consumption
(WCEC), utilising methods from WCET, combining them with en-
ergy modeling to bound program energy consumption [7, 12, 29]. In
many of these studies, energy models are not tailored to the worst
case, nor is the impact of data on energy consumption adequately
reflected. This can lead to unsafe results if the analysis is to be
relied on for guarantees of system behaviour within a given energy
budget, as discussed extensively in [7], or bounds will be overly
pessimistic if conservative over-approximations are used to ensure
safety, as identified in [29].

A common form of model for embedded systems is an instruction
level model. For example, Tiwari et al. [28] use an energy cost for

each instruction and an energy cost for the circuit switching effect
between each instruction, as well as an extra term to cover other
external system effects.

Steinke et al. [26] construct a more detailed energy model that
does consider the effects of data as well as the instructions. The
Hamming distance between consecutive data values and their Ham-
ming weights are considered with respect to both register and
memory access. The technique achieves a 1.7 % average error, how-
ever every input must be known and every internal state calculated
under the technique, an infeasibly large problem for reasoning
about programs as a whole. Park et al. [22] consider how different
operand values affect the energy consumption, using a range of
values between 0x0000 and @xFFFF to ensure that there is a large
number of different Hamming distances between operands. Further
studies have extensively used the Hamming weight to account for
data energy [25]. The study notes that the Hamming distance and
weight are particularly useful for subsequent values on busses in
the processor, and less useful for combinatorial instructions, such
as arithmetic.

Ascia et al. [1] build upon the approach, exploring how the data
transitions from 0 to 1 and 1 to 0 can be given different energy costs.
In a study of the Leon3 processor [23], taking data into account
was found to reduce the model error when a ‘typical’ number of
switching bits was factored in.

Kojima et al. [14] measure the data’s effect on power of hard-
ware units such as adder, multiplier and registers in a DSP. Register
file power was found to show linear dependence on the Hamming
weight of operands, while the adder shows moderate correlation
with the Hamming distance between successive operands. How-
ever, the multiplier shows very little correlation with Hamming
distance, except when one of the inputs is held constant. This sup-
ports the suggestion that combinatorial blocks require parameters
other than the Hamming distance and weight [25]. Similar con-
clusions have been reached in studies which attempt to find the
maximum power a circuit may trigger [19]. Many studies attempt
to maximise the power consumption of a circuit, using a weighted
maximum satisfiability approach [4] and genetic algorithms [10].

The reachability of a particular state has large implications for
maximum energy consumption. Hsiao et al. [11] use a genetic al-
gorithm (GA) to determine the maximum power per cycle in VLSI
circuits. They show that the peak power for a single cycle is higher
than the peak power over a series of cycles, as sequences of opera-
tions constrain the state transitions, making repeated worst cases
unreachable. Therefore, for instructions, the data triggering highest
energy consumption in one may preclude subsequent instructions
from consuming their maximal energy.

GA techniques have also been used to estimate the WCEC of
certain software components: Wagemann et al. [29] use GAs to
search for the maximum amount of energy a single instruction can
consume. Liqat et al. [16] apply GAs to program basic blocks, to
search for the worst-case input of a sequence of instructions. Both
require on-line testing of the hardware, and yield an energy value
that is likely to be close to the WCEC for the instruction or block,
however this cannot be guaranteed.

Probability theory has also been used to characterise how circuits
dissipate power. Burch et al. [2] take a Monte Carlo approach,

@
o

o sl[7 Weibull fi .
g ' Extreme value fit
< 2.0H @ Test data
£ 150
E 1.0
E 0.5F
0.0 . —

66 68 70 72 74 76 78 80

Figure 2: Distribution of energy (m]) for 1sl.

simulating the power of different input patterns to a circuit. The
paper hypothesises that the distribution of powers can frequently
be approximated by a normal distribution, as a consequence of
the central limit theorem [6]. While the central portions of the
probability distribution fit well to a normal distribution, the tails
diverge, implying that a different distribution would be a better fit
when maximum power is of interest. Studies have used extreme
value theory to rectify this issue. The extreme value distribution is
of importance when the maximum of a series of random variables
is needed. It has been used in maximum power estimation of VLSI
circuits [5], giving a probabilistic estimate of maximum power with
a small number of simulations. Further, the WCET community have
used extreme value techniques to probabilistically bound program
execution times [3].

In summary, energy consumption and data dependency have
been considered at the VLSI level using a variety of techniques.
However, there has been little exploration of data dependency at the
instruction or application level for worst case energy consumption
analysis. The study of data dependency is fundamental in establish-
ing both tighter WCEC upper bounds as well as providing greater
confidence in the safety of those bounds. To support program level
analysis, our challenge is to associate energy consumption costs
with software constructs, rather than hardware blocks.

3 INSTRUCTION MODELING

3.1 Individual instructions

While characterising energy consumption of the entire state space
of an instruction is infeasible, requiring all combinations of all in-
puts to be tested, we can statistically characterise an instruction’s
energy consumption for a representative input sample. We use
the AVR platform for our initial experiments due to its simplicity,
repeatedly running code sequences that load random values (uni-
formly distributed) into registers and then executing an instruction
using those registers. An example of the resulting distribution of
energy values can be seen in Figure 2.

We fit the Weibull distribution to the random data energy distri-
bution, under the hypothesis that the switching and hence power
dissipation caused by random data will be close to the maximum.
The distribution can then be examined to estimate an upper bound.
The Weibull cumulative distribution function is a stretched expo-
nential, allowing it to characterise many distributions with a high
density followed by a long tail. This matches our hypothesis of
most random-data power dissipation being close to the maximum,
followed by a tail of less-than-maximum samples. Figure 2 shows

0.10 T T T T T T
é 0.081 — 1s1 1sl-com measured | |
g2 — com — com-1s1 measured
T 0.06f - = Prediction |
Z 0.04}]
Q
S 0.02} i
¥

0.00 —~

Energy (mJ)

Figure 3: Comparison of predicted energy for the combina-
tion of a com and a 1s1 instruction with a simplistic model.

the regular Weibull distribution and an extreme value fit, the re-
versed Weibull distribution. The latter fits best, however it operates
on the premise that there is a finite cut-off point (furthest right)
beyond which there are no samples, which we cannot guarantee.
This could lead to underestimation of an upper bound, compromis-
ing safety, and so we proceed with the regular Weibull distribution.
The Weibull cumulative probability distribution (CDF) is given by:

x—/_t)k

F(x;k,p,0) =1- e_([(1)

where
e x is the random variable,
e k is the shape parameter, defining the extent to which the
distribution is stretched,
o 1 is the location parameter, defining the shift of the distri-
bution,
e 0 is the scale parameter, defining the size of the distribu-
tion.
Using the distribution calculated, and the total size of the input
data space,? an estimate of the maximum possible average power
can be calculated,

(1-CDE(x))-S =1, 2

where CDF(x) is the cumulative density function of the probability
distribution, and S is the total size of the data space. Intuitively, this
is equivalent to finding the value of the percentile representing the
highest power dataset in the entire data space.

3.2 Composing instructions

To statistically characterise programs, our model must support mod-
eling sequences of instructions. The natural unit of such sequences
is a basic block, a sequence with a unique entry point and ending
with a branch instruction. A simplistic method to generate basic
block energy distribution would be to measure each block in iso-
lation with random input data. However, even for small programs
this is significant work that increases prohibitively with program
size.

A more tractable approach is to take the energy model for each
instruction in a basic block and compose these models. This only
requires each individual instruction to be characterised, after which
any size basic block can have its model deduced.

%j.e., the finite set of all inputs an instruction may operate upon

By convolving the individual distributions of instructions to-
gether, a prediction of multiple instructions can be constructed.
Figure 3 shows the distributions for the instructions com (bitwise
complement) and 1s1 (logical shift left). The dashed curve shows
the expected distribution. The two curves marked in green and
orange show the actual distributions of the energy for each in-
struction — one for com, then 1sl, and the second for 1s1, then
com. These distributions are not similar, and more importantly are
higher than the prediction, resulting in an underestimate of the
worst case energy consumption.

The difference in distributions stems from the surrounding in-
structions — to evaluate the instructions, the sequence is prefixed
with a mov instruction to set up the values going into com and 1s1.
This suggests that the actual switching of data between the instruc-
tions can have a significant impact on not only the average energy,
but the shape of the distribution too.

3.3 Instruction transitions

In light of the inaccuracy of single instruction models, we use a
model based on Tiwari et al. [27], using transition distributions to
represent the data dependent transition between instructions. We
assume that the energy consumption can be characterised using
only transitions and no instruction base costs. To calculate the
program energy Ej, formally,

Ep = Z E; j, where E;j j ~ Weibull distribution. (3)
(i.j)€TRACE,

With TRACE,, the sequence of instruction pairs ISA X ISA that
make up the execution of the program p, ISA the set of all instruc-
tions, and E; ; being the energy distribution of switching from
instruction i to j. Ep can be calculated by convolving the individual
probability distributions,

= &

(i,/)€TRACE,,

feskij, pi g, oij). 4

where 1, 0 and k are the parameters for the Weibull probability
density function of each transition, f. The symbol (X) is the con-
volution operator, and f}, is the probability density function of the
instruction sequence. The convolution of two Weibull probability
density functions is not known to have an analytical solution, so
it is solved numerically for the purposes of this study: we project
the distributions onto histograms and then directly convolve the
distributions, at the expense of some sampling error.

3.4 Data collection

The collection of transition distributions for each pair of instruc-
tions is particularly challenging. The most simplistic approach is
to repeat a pair of instructions with specified data and measure the
energy, e.g.

add ro, r1, r2; sub r3, r4, r5.

However, after the first repetition r@ and r3 will not exhibit
the same switching as they did in the first iteration — the value in
the register will not change. Therefore, register values should be
randomised before and after the execution of the instructions,

mov ro, X

mov r3, Y j Emov,mov

add re, ri1, r2 _ mov,add

sub r3, r4, r5 _ Ladd sub
sub, ...

[E RS I CRN

where X and Y are unique registers containing independent, uni-
form random variables. In addition to X and Y, registers r1, r2, r4
and r5 are initialised to random variables. This ensures all variables
that could affect the transition distribution between two instruc-
tions are random and should lead to each transition distribution
conforming to the Weibull distribution. The above test forms the
Ex,y distributions seen to the right of the instructions. This ap-
proach introduces additional mov instructions to the test. These are
convolved with the distribution that is of interest, so they must first
be found in order to then be eliminated.

A large number of values can then be assigned to all variables in
the sequence, s, and the energy, Es measured for each. For example,
this can form the following equation that must be solved to find

Eqdd, sub
Es = Emov,mov ® Emov,add ® Eadd,sub ® Esub,mov- (5)

To solve, we first find the distribution for Ep;00, moo, then the
distributions for En,o0,;, where i is another instruction. For sim-
plicity it is assumed that E; ; = E; ;. The Epo0, moo distribution
can be found by finding the distribution for a repeating sequence of
four movs, alternating between two destination registers and each
using a unique source register containing an independent uniform
random variable. The resulting distribution is En 00, mow convolved
with itself four times. This, along with similarly formed tests to find
Emov,i and Ep,00, j yields the transition distribution for any E; ;.

Currently, we have used this approach to obtain transition distri-
butions for a subset of the AVR’s instruction set. For each instruc-
tion pairing we used 256 random number assignments for single
operand instructions and 1024 for two operand instructions. For
each assignment of random numbers, we ran an unrolled loop of the
code sequence 65536 times and took the average energy consump-
tion across this period. Each such measurement takes on average
one second, and each instruction pairing takes between five and
twenty minutes to be characterised.

3.5 Instruction sequence tests

Using the previously described method, Figure 4 shows the pre-
dicted distributions for three short instruction sequences as dashed
lines. In all cases the prediction is conservative, with the mean of
the distribution overestimated. This makes it useful in a worst case
energy model, since the ggth percentile can be taken as a probabilis-
tic estimation of maximum energy, for example. While we test only
arithmetic instructions, we expect that loads, stores and branches
can also be characterised in the same way.

The figure also demonstrates the case where values in the regis-
ters are not randomly distributed (dashed lines with points). Instead,
they are dependent on the results of previous instructions. All of
these distributions have a smaller mean, where the correlation be-
tween registers causes lower overall energy and so the upper bound
holds, as one would expect.

The tests in this section only showed arithmetic instructions.
However, the distributions for load and store instructions are similar

= = Independent (prediction) —— Independent (measured) ®*—e Dependent (measured)

0.020
. H
B
'z 0.015¢ 1
[}
S .
3| o
£ 0010} o fol &)
=) inc .l com Te \
—% lsr |*® 1sl e \
2 dec ¢ | com e |1,
o 0.005 dec | e Isl 11|
= inc ? | com %[
o lsre o | 1sl ? of,\!
. ¥ $ o, \!
000 PR ‘ 5 5
<»('0. b’>’. b(;o. {5\. </D('o. b’\’.
Energy (mJ)
Figure 4: Energy distributions of three sequences.
w 300F Mode 1 Mode 2 Prediction zero value that persists throughout the sequence. The upper mode
7 2501 ' L ' ' . is caused by neither of the inputs to any of the multiplies being
5 200 AU hich f Itiply when both i
5 B zero, which occurs for every multiply when both inputs are odd.
8 150 K \ 1 While this type of behaviour will affect the tightness of the
g 100) \ 1 energy’s upper bound, it does not affect its safety, since it is the
z 90 ! Vo] upper mode that is captured by the prediction. Additionally we
69' NS E R N > D S S believe this circumstance, where integer values overflow register

Energy (mJ)

Figure 5: Histogram showing energy distribution for a se-
quence of multiplies.

and can be composed similarly. It is expected that branch instruc-
tions will be simple to characterise — while there are often no
direct inputs to a conditional branch, the state of the control flags
influences the direction of the branch. Characterising the whole
instruction set of a machine would mean testing each pairing of in-
structions. This would require a significant number of experiments
for large machines, but is potentially feasible.

4 DATA DEPENDENCY

The previous section suggests that effects of computation may
impact the location of the distribution. This section presents a case
where this occurs in certain sequences of multiplication. Consider
a sequence of mul and mov instructions calculating a'® - b8, where
r20 =aandr21 = b:

1 mov r3, r20; mov r4, r2i1;

2 mul r3, r4; mov r2, ro;

3 mul r2, r3; mov r4, ro;]RepeatZtimes
4 mul r4, r2; mov r3, ro;

Note that on AVR, mul implicitly writes to re.

The sequence was measured for its energy under different inputs
to produce the histogram in Figure 5. The distribution has two
large peaks, labelled with two modes. In this particular example,
the lower energy peak is caused by the computation collapsing to a

sizes, is rare in real-world code as most programming languages
(particularly C) treat integer overflow as undefined (i.e. erroneous)
behaviour.

5 ANALYSING WHOLE PROGRAMS

We wish to validate that our modeling technique can be applied
to whole programs and that it works on more platforms than just
the Atmel AVR. However, the cost of modeling all the instructions
that appear in a full program is large. Therefore, we measure the
energy distribution of full embedded software programs on different
processors to determine whether it can be characterised by the
Weibull distribution. If so, and similar results are seen on different
processors, then our composition technique should be capable of
modeling the behaviour of a full program.

Additionally, we seek to verify that the probabilistic upper bound
of a program distribution is sound, by using hand-crafted data to try
and exercise a range of data switching behaviours in the processor,
and existing GA techniques to search for inputs with high energy
consumption (in the manner of Wagemann [29] and Liqat [16]).

To demonstrate that this technique (i.e. energy distribution) is
not specific to the Atmel AVR, we test benchmarks on the XMOS
XS1-L, a deeply embedded cacheless processor. Both the AVR and
XS1-L are appropriate for IoT applications. The AVR has an 8-bit
data-path, whereas XS1-L is 32 bits. The XS1-L is a single-core
operating at 400 MHz with a four-stage hardware multi-threaded
pipeline. Using single threaded benchmarks, the pipeline is only
25 % utilised. However, the effects of data on these benchmarks is
still measurable.

45000 T - T T
fdct

40000 -
35000
30000
25000 -
20000
15000
10000 |
5000 -

Density
(fdet)
Probabilistic
maximum
(fdet)

Genetic minimum
(fdct)

Genetic maximum

matmult

Genetic minimum
(matmult)
(matmult)

Probabilistic
maximum
(matmult)

AVR

Genetic maximum

20.7

DO
(==
w
Do
St
(=]

20.4

21.1

[}
—

21.0

60000 - :
50000
40000}
30000}
20000}
10000}

matmult

Density
Genetic minimum
(matmult)
Genetic maximum

fct

L matmalt)
Probabilistic
maximum
(matmult)
(fdet)
Genetic maximum
(fdet)
Probabilistic
maximum
(fdet)
XS1-L

Genetic minimum

113.0 113.5 114.0 114.5 115.0

115.5 116.0 116.5 117.0 117.5

Figure 6: Power distributions (mW) for random datasets over full program benchmarks.

Do
S
T

—
at
T

9% difference

—_
(=]
T

‘ :
B matmult| |
I fdct

AVR

Density

7% difference J

ot
T

18.6 18.8 15.0 15.2 1{5.4 1§.6 19.8

200 202 204 206 208 210 212 214

‘ ‘ A B

—

—_
(=]
T

(B matmult
(B fdct

| -

e 1

C D

—

5% difference A ‘ 1

—B ;
‘ 7% difference

Density

N = O o

XS1-L

I . . a

r r
il

- L L

o

1100 1105 11L0 1115 1120 1125 1130 1135

1140 1145 1150 1155 1160 1165 117.0 1175 1180

Figure 7: Distribution of benchmark average power (mW), when run with hand-crafted datasets.

5.1 Benchmarks

For benchmarks, we select programs that have no data dependent
branches, therefore changes in energy are purely due to different
data progressing through the computational path in the processor.
Programs that have data-dependent branches may execute different
sequences of instructions, and may have different execution times,
thus we exclude these to focus purely on changes in energy due to
data values, not program flow. This matter is discussed further in
Section 6.

The benchmarks used for this test are fdct and matmult-int, taken
from BEEBS, an embedded benchmark suite [21]. These tests are
purely integer, because the target processors in this work have no
hardware floating-point support.

fdct has a state space of 1024 bits (one 8x8 block of 16 bit pixel
data), while matmult-int performs a 20x20 matrix multiplication
of 8 bit integers. Both cannot be explored exhaustively, and thus

would benefit from statistical characterisation. Neither of the cho-
sen benchmarks have data dependent branches, thus their execution
time is identical even with different input data.

5.2 Random data

Figure 6 shows the average power when the fdct and matmult-int
benchmarks use random data. The dashed line shows the Weibull
distribution fitted to these data. Overall, the distributions are nar-
row, indicating a low variation caused by the data. The variations
for both benchmarks on AVR are similar, however, each has a dif-
ferent mean, since different instructions are executed, each with a
different average power.

Fitting these parameters to the Weibull distribution for each of
the benchmarks results in an estimation of the maximum achievable
average power for each benchmark, as in Section 3. For example
the probabilistic maximums for AVR are 20.64 mW for fdct and

21.20 mW for matmult. These bounds are shown by the solid verti-
cal lines in Figure 6.

5.3 Genetic algorithm

Related work shows that genetic algorithms (GAs) are an effective
technique to find the maximum power dissipation for circuits and
software. Our paper instantiates a GA that attempts to find a dataset
which increases the energy or power for the entire program.

The results are included in Figure 6 as dotted vertical lines. These
data points are slightly higher and lower than the points found by
the random data — the guidance provided by the GA allows both
higher and lower solutions to be found quickly. Since the parameters
to the Weibull distribution were found for each distribution, the
probability of finding a more extreme solution can be calculated.
For our test cases, the probabilities are less than 10~°, provided the
assumption of the distribution being a good fit holds. However, the
size of the data input space is so large that there are many possible
states which may trigger a larger energy consumption.

5.4 Hand-crafted data

Due to the extremely large number of input states, certain configu-
rations of input are never considered by random search or the GA.
This includes data such as every bit set and every bit cleared, which
could be important and trigger an unusually high or low energy
consumption. We hand crafted certain inputs to exercise these edge
cases, to evaluate whether the GA or probabilistic bounds could be
exceeded. The types of hand-crafted data fed into each benchmark
are:

All bits zero. All of the bits in the data values are set to zero.

All bits one. All of the bits in the data values are set to one.

Strided ones. The data element is set to one at various strides,
such as every 2, 4, 8 or 16 bytes.

Strided rand. As above, with stride contents randomised.

Patterns. Patterns known to cause high energy consumption. E.g.
0xa..aand 0x5. .5 in multiplication [13].

Sparse. Only one element set to one in various positions.

Restricted bit-width. Setting random n-bit values in a m-bit off-
set region, as shown below:

All elements the same. Every element in the data is set to the
same value. A range of values are tested.

Figure 7 shows the average power when all of these hand-crafted
sets of data are measured on each benchmark. There are many
different components of these graphs — each caused by a different
part of the hand-crafted data. They are discussed below, starting
with matmult.

A This mode is around the lowest average power achievable for
the matmult benchmark, all zero data or sparse data.

B The distribution consists of sparse elements with few bits set to
one. This causes low average power since at most single bits set
to one are multiplied, with repeated zeros in-between.

C There are a spread of points at this location, formed from tests
with more dense data.

D The highest consumption observed in the non-sparse tests is
21.04 mW for AVR, and is caused by data which has the same
value in all the elements. The values of the elements for the
top results are 247, 253, 181, 221 and 245 — close to having all
bits set. These are the only tests which significantly exceed the
distribution obtained from random data. For the XS1-L, a larger
proportion of tests dissipate a higher power, visible in the form
of a third peak.

There are three modes of interest for fdct:

E Three data points which are far lower than any other. These are
all zero data and two instances of strided data, when the first
in every 32 elements is one and all elements are zero. This is
sparse data, however any of the other sparse data still triggers
much higher power. This characteristic is observed on both
architectures.

F The majority of tests occur in this bracket, below the expectation
given by random data. The AVR is an 8-bit processor, so 16-bit
arithmetic can require two instructions, for upper and lower
bits. Many of the hand-crafted data sets use zero or close to zero
value data, resulting in the upper operation having lower power.
This is not the case with the 32-bit XS1-L, which produces a
single peak.

G These tend to be triggered by higher-order bits set. With high
valued data, the second (upper) part of the arithmetic operation
has non-zero value, corresponding to a higher average power
on AVR.

5.5 Analysis

Overall, there is a trend towards higher average power as data
becomes more random or dense. The distribution predicted by
random data is a good estimation of the upper bound. Several
tests exceed the limits found with GAs, but all are bounded by the
probabilistic highest value.

Comparing the characteristics observed on both processors, the
distributions take similar forms for both matmult and fdct. The
XS1-L dissipates more power, but is a more complex device with
a higher operating frequency. However, the separation between
the distributions A and B in matmult are within the same order of
magnitude for both devices. Similarly, the widths of the features
denoted F in fdct differs by a comparable amount. Overall, for
AVR and XS1-L respectively, matmult is shown to have a power
variation of 6.5 % and 2.2 %, with fdct showing 9.1 % and 6.0 %. These
are within the error margins of many energy models, and are in fact
likely to be a contributing factor to these errors. These variations,
along with environmental factors that may influence device energy
consumption, must be considered in order to establish upper energy
bounds with adequate safety.

In summary, it appears that for both platforms tested, the energy
distribution of a program can be characterised as a statistical distri-
bution, and further that the probabilistic upper bound exceeds all
tests tried. With full instruction models, our technique should be
able to statically determine this distribution.

6 DISCUSSION

Our technique allows for characterising and bounding the amount
of energy consumption caused by variations in data operands in a
program. A complete analysis requires a model for each instruction
pairing for each platform, which, while costly, is a worthwhile
trade-off for accurate offline energy estimation. In comparison with
the technique of Steinke et al. [26], rather than characterising each
instruction by its input and the current processor state, we instead
produce a single probability distribution representing the likely
costs of transitioning from one instruction to another, enabling
composition.

However, the technique does not fully account for all energy
consumption in a processor. A large cost in many processors is
static leakage, the energy lost for every moment that the processor
is active. Existing WCEC techniques [7, 12, 29] combine both (an
approximation of) circuit switching costs with standard techniques
to estimate worst case code paths, such as IPET [15]. To fully ac-
count for processor costs, our probabilistic technique would need
to be combined in a similar fashion to find the greatest probabilistic
upper bound on energy on all paths through a program. We have
not yet explored this as we focus only on data dependent costs here.

Our technique also benefits from the predictable nature of pro-
cessors suited for the IoT domain, i.e. those without caches, branch
prediction or speculative execution, all of which have energy costs
that heavily depend on program state. Were the technique to be
applied to processors with such features, then probabilistic models
would need developing for those features too, such as the work of
Puranik et al. [24], although they focus on the mean execution time
rather than either energy or upper bounds. The tightness of bounds
achievable for such features remains an open question.

Finally our technique does not address external factors in energy
consumption, such as system-level energy or variability due to en-
vironmental conditions. These full-system factors fall well outside
the bounds of embedded software analysis.

7 CONCLUSION AND FUTURE WORK

This paper has analysed how data values within processors affect
energy consumption. Basic blocks can be modeled by composing
instruction models, and programs with complex control flow can
be modeled by composing basic blocks. To create a composable
analysis, the transition between instruction pairs was modeled as a
Weibull distribution. Distributions for instruction pairs can then
be convolved to give a probability distribution of energy for an
instruction sequence.

Several instruction sequences were tested, comparing the pre-
dictions to the actual measured distributions to validate our model.
The prediction is tight, but overestimates the energy consumption
in all cases, providing an estimate of the likely worst case energy
consumption. The prediction assumes that all of the instructions are
independent of each other, which is not generally true. Repeating
the measurements with dependent variables in an instruction se-
quence shows that added correlation between the values decreases
the total energy consumption. The prediction (ignoring dependen-
cies) still provides an upper bound as expected in this case, but it is
not as tight.

The correlation between data values input and output from in-
structions can lead to unusual energy behaviour. An instruction
sequence was shown to produce bimodal energy behaviour across
a range of random data, caused by repeatedly biasing data values
towards zero. In such a case of strong correlation between data
values, our model will over-predict.

Initial analysis of full programs suggests that using random data
to create a Weibull distribution allows a probabilistic worst case
for that program to be estimated. This worst case was higher than
could be found using a GA, random or hand-crafted data, giving us
confidence that our estimates are safe.

More generally, this work has shown that worst case energy
analysis requires more than simply a model generated from profil-
ing with random input data. The distribution of profiling results
must be analysed to determine a likely maximum. Physical system
properties such as energy consumption are inherently noisy, and
cannot be as tightly or reliably bound as execution time. However,
we demonstrate empirically that taking a high-order percentile of
a Weibull distribution, fit to random input data, provides a basis
for pragmatic WCEC modeling. We also show that the distribu-
tions of energy for instruction transitions, rather than individual
instructions, are necessary when creating a composable model.

A next step towards more accurate static techniques for WCEC
estimation would be to model the entire instruction set using the
energy modelling technique presented in this paper, and to combine
such a cost model with a worst-case analysis technique such as IPET,
creating a technique that considers both length and data effects
on program energy probabilistically. Following existing WCEC
techniques, this should yield a more accurate upper bound through
consideration of additional energy contributors.

A further observation is that programs have differing degrees of
data dependency — some instructions in the program are purely
control, and do not operate on the data input to the program. Static
analysis could find only the instructions that are in the data path
of the program, and an estimate of the total variability due to data
could be constructed from these instructions and their transition
distributions.

ACKNOWLEDGMENTS

This research has received funding from the European Union 7th
Framework Programme (FP7/2007-2013) under grant agreement
no 318337, ENTRA - Whole-Systems Energy Transparency; grant
agreement no 611004, ICT-Energy; and the ARTEMIS Joint Un-
dertaking under grant agreement 621429, EMC2. This study was
also partly sponsored by EPSRC’s Doctoral Training Account EP /
K502996 / 1 (to the first author).

REFERENCES

[1] G. Ascia, V. Catania, M. Palesi, and D. Sarta. 2001. An instruction-level power
analysis model with data dependency. VLSI DESIGN 12, 2 (2001), 245-273. DOI:
https://doi.org/10.1155/2001/82129

[2] R.Burch, F. N. Najm, P. Yang, and T. N. Trick. 1993. A Monte Carlo approach
for power estimation. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems 1, 1 (March 1993), 63-71. DOI:https://doi.org/10.1109/92.219908

[3] F.J.Cazorla, T. Vardanega, E. Quifiones, and J. Abella. 2013. Upper-bounding Pro-
gram Execution Time with Extreme Value Theory. In 13th International Workshop
on Worst-Case Execution Time Analysis (OpenAccess Series in Informatics (OA-
Slcs)), C. Maiza (Ed.), Vol. 30. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
Dagstuhl, Germany, 64-76. DOI:https://doi.org/10.4230/0OASIcs. WCET.2013.64

https://doi.org/10.1155/2001/82129
https://doi.org/10.1109/92.219908
https://doi.org/10.4230/OASIcs.WCET.2013.64

4]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

S. Devadas, K. Keutzer, and J. White. 1992. Estimation of power dissipation
in CMOS combinational circuits using Boolean function manipulation. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 11, 3
(Mar 1992), 373-383. DOI :https://doi.org/10.1109/43.124424

N. E. Evmorfopoulos, G. I. Stamoulis, and J. N. Avaritsiotis. 2002. A Monte Carlo
approach for maximum power estimation based on extreme value theory. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 21, 4
(Apr 2002), 415-432. DOI:https://doi.org/10.1109/43.992765

W. Feller. 1945. The fundamental limit theorems in probability. Bull
Amer. Math. Soc. 51, 11 (Nov. 1945), 800-833. DOI:https://doi.org/10.1090/
S0002-9904-1945-08448-1

K. Georgiou, S. Kerrison, Z. Chamski, and K. Eder. 2017. Energy Transparency
for Deeply Embedded Programs. ACM Trans. Archit. Code Optim. 14, 1, Article 8
(March 2017), 26 pages. DOI:https://doi.org/10.1145/3046679

N. Grech, K. Georgiou, J. Pallister, S. Kerrison, J. Morse, and K. Eder. 2015. Static
Analysis of Energy Consumption for LLVM IR Programs. In Proceedings of the
18th International Workshop on Software and Compilers for Embedded Systems
(SCOPES ’15). ACM, New York, NY, USA, 12-21. DOI:https://doi.org/10.1145/
2764967.2764974

S.Hahn, J. Reineke, and R. Wilhelm. 2015. Towards Compositionality in Execution
Time Analysis: Definition and Challenges. SIGBED Rev. 12, 1 (March 2015), 28-36.
DOI : https://doi.org/10.1145/2752801.2752805

M. S. Hsiao. 1999. Peak power estimation using genetic spot optimization for large
VLSI circuits. In Design, Automation and Test in Europe Conference and Exhibition,
1999. Proceedings. 175-179. DOI : https://doi.org/10.1109/DATE.1999.761115

M. S. Hsiao, E. M. Rudnick, and J. H. Patel. 1997. K2: An Estimator for Peak
Sustainable Power of VLSI Circuits. In Proceedings of the 1997 International
Symposium on Low Power Electronics and Design (ISLPED *97). ACM, New York,
NY, USA, 178-183. DOI:https://doi.org/10.1145/263272.263321

R. Jayaseelan, T. Mitra, and X. Li. 2006. Estimating the Worst-Case Energy
Consumption of Embedded Software. In 12th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS’06). 81-90. DOI:https://doi.org/
10.1109/RTAS.2006.17

S. Kerrison and K. Eder. 2015. Energy Modeling of Software for a Hardware
Multithreaded Embedded Microprocessor. ACM Trans. Embed. Comput. Syst. 14,
3, Article 56 (April 2015), 25 pages. DOI :https://doi.org/10.1145/2700104

H. Kojima, D. J. Gorny, K. Nitta, and K. Sasaki. 1995. Power analysis of a
programmable DSP for architecture/program optimization. In 1995 IEEE Sym-
posium on Low Power Electronics. Digest of Technical Papers. 26-27. DOI:
https://doi.org/10.1109/LPE.1995.485383

Y.-T. S. Li and S. Malik. 1995. Performance Analysis of Embedded Software
Using Implicit Path Enumeration. SIGPLAN Not. 30, 11 (Nov. 1995), 88-98. DOI:
https://doi.org/10.1145/216633.216666

U. Ligat, K. Georgiou, S. Kerrison, P. Lopez-Garcia, J. P. Gallagher, M. V.
Hermenegildo, and K. Eder. 2016. Inferring Parametric Energy Consumption
Functions at Different Software Levels: ISA vs. LLVM IR. Lecture Notes in Com-
puter Science, Vol. 9964. Springer International Publishing, Cham, 81-100. DOI:
https://doi.org/10.1007/978-3-319-46559-3_5

U. Liqat, S. Kerrison, A. Serrano, K. Georgiou, P. Lopez-Garcia, N. Grech, M. V.
Hermenegildo, and K. Eder. 2014. Energy Consumption Analysis of Programs

(18]

[19]

[20]

[21

[22]

(23]

[24]

[25]

[27]

(28]

[29]

Based on XMOS ISA-Level Models. Lecture Notes in Computer Science, Vol. 8901.
Springer International Publishing, Cham, 72-90. DOI:https://doi.org/10.1007/
978-3-319-14125-1_5

J. Morse, S. Kerrison, and K. Eder. 2016. On the infeasibility of analysing worst-
case dynamic energy. CoRR abs/1603.02580 (2016). http://arxiv.org/abs/1603.
02580

F. N. Najm. 1994. A survey of power estimation techniques in VLSI circuits.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems 2, 4 (Dec 1994),
446-455. DOI:https://doi.org/10.1109/92.335013

J. Nunez-Yanez and G. Lore. 2013. Enabling accurate modeling of power and
energy consumption in an ARM-based System-on-Chip. Microprocessors and
Microsystems 37, 3 (2013), 319 — 332. DOI:https://doi.org/10.1016/j.micpro.2012.
12.004

J. Pallister, S. Hollis, and J. Bennett. 2013. BEEBS: Open Benchmarks for Energy
Measurements on Embedded Platforms. (2013). arXiv:1308.5174

Y. H. Park, S. Pasricha, F. J. Kurdahi, and N. Dutt. 2011. A Multi-Granularity
Power Modeling Methodology for Embedded Processors. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems 19, 4 (April 2011), 668—-681. DOI:
https://doi.org/10.1109/TVLSL.2009.2039153

S. Penolazzi, L. Bolognino, and A. Hemani. 2009. Energy and Performance Model
of a SPARC Leon3 Processor. In 12th Euromicro Conference on Digital System
Design, Architectures, Methods and Tools. 651-656. DOI : https://doi.org/10.1109/
DSD.2009.147

V. Puranik, T. Mitra, and Y. N. Srikant. 2009. Probabilistic Modeling of Data
Cache Behavior. In Proceedings of the Seventh ACM International Conference on
Embedded Software (EMSOFT "09). ACM, New York, NY, USA, 255-264. DOI:

https://doi.org/10.1145/1629335.1629370
D. Sarta, D. Trifone, and G. Ascia. 1999. A data dependent approach to instruction

level power estimation. In Proceedings IEEE Alessandro Volta Memorial Workshop
on Low-Power Design. 182-190. DOI : https://doi.org/10.1109/LPD.1999.750419

S. Steinke, M. Knauer, L. Wehmeyer, and P. Marwedel. 2001. An accurate and
fine grain instruction-level energy model supporting software optimizations. In
Proceedings of PATMOS.

V. Tiwari, S. Malik, and A. Wolfe. 1994. Power Analysis of Embedded Software:
A First Step Towards Software Power Minimization. IEEE Trans. Very Large Scale
Integr. Syst. 2, 4 (Dec. 1994), 437-445. DOI :https://doi.org/10.1109/92.335012

V. Tiwari, S. Malik, A. Wolfe, and M. Tien-Chien Lee. 1996. Instruction Level
Power Analysis and Optimization of Software. Journal of VLSI Signal Processing
Systems for Signal, Image, and Video Technology 13, 2-3 (Dec. 1996), 223-238.
DOI:https://doi.org/10.1007/BF01130407

P. Wigemann, T. Distler, T. Honig, H. Janker, R. Kapitza, and W. Schroder-
Preikschat. 2015. Worst-Case Energy Consumption Analysis for Energy-
Constrained Embedded Systems. In 2015 27th Euromicro Conference on Real-Time
Systems. 105-114. DOI :https://doi.org/10.1109/ECRTS.2015.17

R. Wilhelm,]J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley, G.
Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut, P. Puschner, J.
Staschulat, and P. Stenstrém. 2008. The Worst-case Execution-time Problem—
Overview of Methods and Survey of Tools. ACM Trans. Embed. Comput. Syst. 7,
3, Article 36 (May 2008), 53 pages. DOI:https://doi.org/10.1145/1347375.1347389

https://doi.org/10.1109/43.124424
https://doi.org/10.1109/43.992765
https://doi.org/10.1090/S0002-9904-1945-08448-1
https://doi.org/10.1090/S0002-9904-1945-08448-1
https://doi.org/10.1145/3046679
https://doi.org/10.1145/2764967.2764974
https://doi.org/10.1145/2764967.2764974
https://doi.org/10.1145/2752801.2752805
https://doi.org/10.1109/DATE.1999.761115
https://doi.org/10.1145/263272.263321
https://doi.org/10.1109/RTAS.2006.17
https://doi.org/10.1109/RTAS.2006.17
https://doi.org/10.1145/2700104
https://doi.org/10.1109/LPE.1995.485383
https://doi.org/10.1145/216633.216666
https://doi.org/10.1007/978-3-319-46559-3_5
https://doi.org/10.1007/978-3-319-14125-1_5
https://doi.org/10.1007/978-3-319-14125-1_5
http://arxiv.org/abs/1603.02580
http://arxiv.org/abs/1603.02580
https://doi.org/10.1109/92.335013
https://doi.org/10.1016/j.micpro.2012.12.004
https://doi.org/10.1016/j.micpro.2012.12.004
http://arxiv.org/abs/1308.5174
https://doi.org/10.1109/TVLSI.2009.2039153
https://doi.org/10.1109/DSD.2009.147
https://doi.org/10.1109/DSD.2009.147
https://doi.org/10.1145/1629335.1629370
https://doi.org/10.1109/LPD.1999.750419
https://doi.org/10.1109/92.335012
https://doi.org/10.1007/BF01130407
https://doi.org/10.1109/ECRTS.2015.17
https://doi.org/10.1145/1347375.1347389

	Abstract
	1 Introduction
	2 Related work
	3 Instruction Modeling
	3.1 Individual instructions
	3.2 Composing instructions
	3.3 Instruction transitions
	3.4 Data collection
	3.5 Instruction sequence tests

	4 Data dependency
	5 Analysing whole programs
	5.1 Benchmarks
	5.2 Random data
	5.3 Genetic algorithm
	5.4 Hand-crafted data
	5.5 Analysis

	6 Discussion
	7 Conclusion and future work
	Acknowledgments
	References

