research

Flavor-oscillation clocks, continuous quantum measurements and a violation of Einstein equivalence principle

Abstract

The relation between Einstein equivalence principle and a continuous quantum measurement is analyzed in the context of the recently proposed flavor-oscillation clocks, an idea pioneered by Ahluwalia and Burgard (Gen. Rel Grav. Errata 29, 681 (1997)). We will calculate the measurement outputs if a flavor-oscillation clock, which is immersed in a gravitational field, is subject to a continuous quantum measurement. Afterwards, resorting to the weak equivalence principle, we obtain the corresponding quantities in a freely falling reference frame. Finally, comparing this last result with the measurement outputs that would appear in a Minkowskian spacetime it will be found that they do not coincide, in other words, we have a violation of Einstein equivalence principle. This violation appears in two different forms, namely: (i) the oscillation frequency in a freely falling reference frame does not match with the case predicted by general relativity, a feature previously obtained by Ahluwalia; (ii) the probability distribution of the measurement outputs, obtained by an observer in a freely falling reference frame, does not coincide with the results that would appear in the case of a Minkowskian spacetime.Comment: 16 pages, accepted in Mod. Phys. Letts.

    Similar works

    Available Versions

    Last time updated on 01/04/2019