604 research outputs found

    Multistep self-assembly of heteroleptic magnesium and sodium-magnesium benzamidinate complexes

    Get PDF
    Reaction of the magnesium bis-alkyl Mg(CH2SiMe3)(2) and the sodium amide NaHMDS (where HMDS = N(SiMe3)(2)) with benzonitrile yields the homometallic heteroleptic complex [PhC(NSiMe3)(2)Mg{mu-NC(CH2SiMe3)Ph}](2) (1). It appears that at least six independent reactions must have occurred in this one-pot reaction to arrive at this mixed benzamidinate ketimido product. Two benzonitrile solvated derivatives of Mg(CH2SiMe3)(2) (5a and 5b) have been synthesized, with 5a crystallographically characterized as a centrosymmetric (MgC)(2) cyclodimer. When, the components of 5a are allowed to react for longer, partial addition of the Mg-alkyl unit across the C N triple bond occurs to yield the trimeric species (Me3SiCH2)(2)Mg-3[mu-N=C(CH2SiMe3)Ph](4)center dot 2N CPh (6), with bridging ketimido groups and terminal alkyl groups. Finally, using the same starting materials as that which produced 1, but altering their order of addition, a magnesium bis-alkyl unit is inserted into the Na-N bonds of a benzamidinate species to yield a new sodium magnesiate complex, PhC(NSiMe3)(2)Mg(mu-CH2SiMe3)(2)Na center dot 2TMEDA (7). The formation of 7 represents a novel (insertion) route to mixed-metal species of this kind and is the first Such example to contain a bidentate terminal anion attached to the divalent metal center. All new species are characterized by H-1 and C-13 NMR spectroscopy and where appropriate by IR spectroscopy. The solid-state structures of complexes 1, 5a, and 7 have also been determined and are disclosed within

    Methods of Determining Thermal Accommodation Coefficients from Free Molecular Flow Heat Transfer Data

    Get PDF
    Heat transfer in rarefied gases, a previously little investigated subject, has undergone advances in the past few years due to increased areas of application. Among new areas of application are the insulation of booster propellant storage vessels and heat transfer to exterior surfaces of space vehicles. Low density heat transfer is subdivided into several regimes with the Knudsen number, Kn (The ration of mean free path to characteristic dimension of the system) serving as the criteria for designation.\u27 At sufficiently low pressures Kn becomes large compared with unity. For Kn greater than about 3, intermolecular collisions in a gas become negligible compared with gas molecule - boundary collisions. This is referred to as the free molecule flow region of gas dynamics and heat conduction. Heat conducted between surfaces separated by a gas with Kn\u3e3 occurs predominately by the mechanism of thermal exchange by direct molecule - wall collisions

    Process for coating carbon fibers with pitch and composites made therefrom

    Get PDF
    The present invention is directed to a process for coating carbon fibers with a pitch material. The process employs a pressurized air-comb for spreading a carbon fiber tow into individual carbon fiber filaments and providing the carbon fiber filaments in a spreaded tow to a powder deposition chamber. A pitch material is dried and finely ground and is then fed into the coating chamber at a point above the traveling spreaded carbon fiber tow. The pitch powder initially falls onto the fiber tow and begins forming a uniform coating around the individual carbon fibers. After falling past the point of the traveling carbon tow, the pitch powder is then recirculated back to the upper portion of the coating chamber and is entrained within a pitch powder cloud through which the threaded fiber tow travels. Fibers that are coated by such a method may be used to form carbon/carbon composites that exhibit high strength and excellent mechanical properties. The carbon fibers that are coated according to the present invention do not require the repeated multi-impregnation steps normally associated with carbon/carbon composite formation

    Fuel Cell Handbook, Fourth Edition

    Get PDF
    Robust progress has been made in fuel cell technology since the previous edition of the Fuel Cell Handbook was published in January 1994. This Handbook provides a foundation in fuel cells for persons wanting a better understanding of the technology, its benefits, and the systems issues that influence its application. Trends in technology are discussed, including next-generation concepts that promise ultra high efficiency and low cost, while providing exceptionally clean power plant systems. Section 1 summarizes fuel cell progress since the last edition and includes existing power plant nameplate data. Section 2 addresses the thermodynamics of fuel cells to provide an understanding of fuel cell operation at two levels (basic and advanced). Sections 3 through 6 describe the four major fuel cell types and their performance based on cell operating conditions. The section on polymer electrolyte membrane fuel cells has been added to reflect their emergence as a significant fuel cell technology. Phosphoric acid, molten carbonate, and solid oxide fuel cell technology description sections have been updated from the previous edition. New information indicates that manufacturers have stayed with proven cell designs, focusing instead on advancing the system surrounding the fuel cell to lower life cycle costs. Section 7, Fuel Cell Systems, has been significantly revised to characterize near-term and next-generation fuel cell power plant systems at a conceptual level of detail. Section 8 provides examples of practical fuel cell system calculations. A list of fuel cell URLs is included in the Appendix. A new index assists the reader in locating specific information quickly

    The need for widely available genomic testing in rare eye diseases: an ERN-EYE position statement

    Get PDF
    BACKGROUND: Rare Eye Diseases (RED) are the leading cause of visual impairment and blindness for children and young adults in Europe. This heterogeneous group of conditions includes over 900 disorders ranging from relatively prevalent disorders such as retinitis pigmentosa to very rare entities such as developmental eye anomalies. A significant number of patients with RED have an underlying genetic etiology. One of the aims of the European Reference Network for Rare Eye Diseases (ERN–EYE) is to facilitate improvement in diagnosis of RED in European member states. MAIN BODY: Technological advances have allowed genetic and genomic testing for RED. The outcome of genetic testing allows better understanding of the condition and allows reproductive and therapeutic options. The increase of the number of clinical trials for RED has provided urgency for genetic testing in RED. A survey of countries participating in ERN-EYE demonstrated that the majority are able to access some forms of genomic testing. However, there is significant variability, particularly regarding testing as part of clinical service. Some countries have a well-delineated rare disease pathway and have a national plan for rare diseases combined or not with a national plan for genomics in medicine. In other countries, there is a well-established organization of genetic centres that offer reimbursed genomic testing of RED and other rare diseases. Clinicians often rely upon research-funded laboratories or private companies. Notably, some member states rely on cross-border testing by way of an academic research project. Consequently, many clinicians are either unable to access testing or are confronted with long turnaround times. Overall, while the cost of sequencing has dropped, the cumulative cost of a genomic testing service for populations remains considerable. Importantly, the majority of countries reported healthcare budgets that limit testing. SHORT CONCLUSION: Despite technological advances, critical gaps in genomic testing remain in Europe, especially in smaller countries where no formal genomic testing pathways exist. Even within larger countries, the existing arrangements are insufficient to meet the demand and to ensure access. ERN-EYE promotes access to genetic testing in RED and emphasizes the clinical need and relevance of genetic testing in RED
    • 

    corecore