7,533 research outputs found

    Numerical Study on Split Coil-shaped HTS Bulks to Improve the Field Homogeneity for Compact NMR Relaxometry Magnets

    Get PDF
    AbstractWe have been developing a new compact NMR magnet using stacked HTS bulks. In this pa er, in order to improve the trapped magnetic field homogeneity and to obtain the enlarged sample space of HTS bulk magnet for compact NMR relaxometry, the HTS bulk magnet with 10mm gap length in the center region of HTS bulk magnet (we call it “split coil-shaped THS bulks”) were proposed and studied as the functions of size and shape of HTS bulk using 3D FEM based electromagnetic analysis. The improved field homogeneity was obtained using notch coil shaped HTS bulk configuration and the field compensation by attached the coil instated of the bulks

    Raman signatures of classical and quantum phases in coupled dots: A theoretical prediction

    Get PDF
    We study electron molecules in realistic vertically coupled quantum dots in a strong magnetic field. Computing the energy spectrum, pair correlation functions, and dynamical form factor as a function of inter-dot coupling via diagonalization of the many-body Hamiltonian, we identify structural transitions between different phases, some of which do not have a classical counterpart. The calculated Raman cross section shows how such phases can be experimentally singled out.Comment: 9 pages, 2 postscript figures, 1 colour postscript figure, Latex 2e, Europhysics Letters style and epsfig macros. Submitted to Europhysics Letter

    Background light measurements at the DUMAND site

    Get PDF
    Ambient light intensities at the DUMAND site, west of the island of Hawaii were measured around the one photoelectron level. Throughout the water column between 1,500m and 4,700m, a substantial amount of stimulateable bioluminescence is observed with a ship suspended detector. But non-stimulated bioluminescence level is comparable, or less than, K sup 40 background, when measured with a bottom tethered detector typical of a DUMAND optical module

    Lifestyle changes of Japanese people on overseas assignment in Michigan, USA

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Temporary work assignments in the United States (US) are widely considered to have negative health outcomes on Asians mostly due to adverse changes in diet and exercise, though there is little research on this phenomenon. This study investigated the impact of lifestyle changes on the biological and psychological health and health behaviours of Japanese people on temporary assignments in the US.</p> <p>Methods</p> <p>In this cross sectional survey, we distributed a 38 item self-administered questionnaire addressing health habits, mental health function, lifestyle changes and dietary habits to adult Japanese patients presenting for general physicals at a family medicine clinic serving Japanese patients. We conducted simple statistics and regression analysis between length of stay and other health outcomes to determine whether length of residence in the US was predictive of negative lifestyle changes.</p> <p>Results</p> <p>Most participants reported increased caloric intake, weight gain, and less exercise. They also reported increased time with family. More women than men reported physical symptoms and anxiety related to stress. Smoking and alcohol intake were essentially unchanged. No associations were identified between length of residence in the US and health lifestyle habits or other health outcomes.</p> <p>Conclusion</p> <p>Negative lifestyle changes occur in diet and exercise for overseas Japanese people, but a positive change in increased family time was found. Women appear to be at a greater risk for somatic disorders than men. As duration of stay does not appear predictive of adverse changes, clinicians should advise patients going abroad of these risks regardless of the term of the work assignment.</p

    Path Integral Monte Carlo Simulation of the Low-Density Hydrogen Plasma

    Get PDF
    Restricted path integral Monte Carlo simulations are used to calculate the equilibrium properties of hydrogen in the density and temperature range of 9.83×10−4≀ρ≀0.153gcm−39.83 \times 10^{-4}\rm \leq \rho \leq 0.153 \rm gcm^{-3} and 5000≀T≀250000K5000 \leq T \leq 250 000 \rm K. We test the accuracy of the pair density matrix and analyze the dependence on the system size, on the time step of the path integral and on the type of nodal surface. We calculate the equation of state and compare with other models for hydrogen valid in this regime. Further, we characterize the state of hydrogen and describe the changes from a plasma to an atomic and molecular liquid by analyzing the pair correlation functions and estimating the number of atoms and molecules present.Comment: 12 pages, 21 figures, submitted for Phys. Rev.

    Identification problems of muon and electron events in the Super-Kamiokande detector

    Get PDF
    In the measurement of atmospheric nu_e and nu_mu fluxes, the calculations of the Super Kamiokande group for the distinction between muon-like and electronlike events observed in the water Cerenkov detector have initially assumed a misidentification probability of less than 1 % and later 2 % for the sub-GeV range. In the multi-GeV range, they compared only the observed behaviors of ring patterns of muon and electron events, and claimed a 3 % mis-identification. However, the expressions and the calculation method do not include the fluctuation properties due to the stochastic nature of the processes which determine the expected number of photoelectrons (p.e.) produced by muons and electrons. Our full Monte Carlo (MC) simulations including the fluctuations of photoelectron production show that the total mis-identification rate for electrons and muons should be larger than or equal to 20 % for sub-GeV region. Even in the multi-GeV region we expect a mis-identification rate of several % based on our MC simulations taking into account the ring patterns. The mis-identified events are mostly of muonic origin.Comment: 17 pages, 12 figure

    Displaced geostationary orbits using hybrid low-thrust propulsion

    Get PDF
    In this paper, displaced geostationary orbits using hybrid low-thrust propulsion, a complementary combination of Solar Electric Propulsion (SEP) and solar sailing, are investigated to increase the capacity of the geostationary ring that is starting to become congested. The SEP propellant consumption is minimized in order to maximize the mission lifetime by deriving semi-analytical formulae for the optimal steering laws for the SEP and solar sail accelerations. By considering the spacecraft mass budget, the performance is also expressed in terms of payload mass capacity. The analyses are performed both for the use of pure SEP and hybrid low-thrust propulsion to allow for a comparison. It is found that hybrid low-thrust control outperforms the pure SEP case both in terms of payload mass capacity and mission lifetime for all displacements considered. Hybrid low-thrust propulsion enables payloads of 255 to 487 kg to be maintained in a 35 km displaced orbit for 10 to 15 years. Adding the influence of the J2 and J22 terms of the Earth’s gravity field has a small effect on this lifetime, which becomes almost negligible for small values of the sail lightness number. Finally, two SEP transfers that allow for an improvement in the performance of hybrid low-thrust control are optimized for the propellant consumption by solving the accompanying optimal control problem using a direct pseudospectral method. The first type of transfer enables a transit between orbits displaced above and below the equatorial plane, while the second type of transfer enables customized service for which a spacecraft is transferred to a Keplerian parking orbit when geostationary coverage is not needed. While the latter requires a modest propellant budget, the first type of transfer comes at the cost of an almost negligible SEP propellant consumption

    Cascading disasters triggered by tsunami hazards: A perspective for critical infrastructure resilience and disaster risk reduction

    Get PDF
    Although many studies have investigated relationships between tsunami characteristics and the impact on physical property and infrastructure, such information cannot explain how the damage to each object or type of infrastructure can trigger failures of other facilities. To understand these connections and the cascading impacts, this article reviewed several recent damaging tsunami events in Japan and Indonesia, including the 2004 Indian Ocean tsunami and the 2011 Great East Japan Earthquake and tsunami. A proposed cascading magnitude scale was applied to each tsunami event to determine and categorize causes, effects, and escalation points. Large tsunamis tend to be associated with earthquakes, liquefaction, and landslides that multiply the scale of impact. The main escalation points for tsunami related disasters were found to be failures of tsunami warnings, power plants, medical facilities, educational facilities, and infrastructure. From the perspectives of critical infrastructure resilience and disaster risk reduction, analysis of cascading impacts of multiple recent tsunami events could contribute to greater understanding of economic, political, and social impacts that stem from technical decisions regarding infrastructure management. Detailed examples of tsunami cases demonstrate the potential scale and extent of damage from cascading events, and by identifying the roles and examples of escalation points, disaster managers and decision-makers can better mitigate cascading impacts by targeting and preventing escalation points. However, more detailed investigation on tsunami characteristics and their impact on failures of each type of facility is still needed to develop tools to support decision-making for better emergency management to address short- and long-term social impacts
    • 

    corecore