1,016 research outputs found

    Acid-sensing ion channel 1a drives AMPA receptor plasticity following ischemia and acidosis in hippocampal CA1 neurons

    Get PDF
    The CA1 region of the hippocampus is particularly vulnerable to ischemic damage. While NMDA receptors play a major role in excitotoxicity, it is thought to be exacerbated in this region by two forms of post-ischemic AMPA receptor (AMPAR) plasticity - namely, anoxic long-term potentiation (a-LTP), and a delayed increase in the prevalence of Ca2+ -permeable GluA2-lacking AMPARs (CP-AMPARs). The acid-sensing ion channel 1a (ASIC1a) which is expressed in CA1 pyramidal neurons, is also known to contribute to post-ischemic neuronal death and to physiologically induced LTP. This raises the question - does ASIC1a activation drive the post-ischemic forms of AMPAR plasticity in CA1 pyramidal neurons? We have tested this by examining organotypic hippocampal slice cultures (OHSCs) exposed to oxygen glucose deprivation (OGD), and dissociated cultures of hippocampal pyramidal neurons (HPN) exposed to low pH (acidosis). We find that both a-LTP and the delayed increase in the prevalence of CP-AMPARs are dependent on ASIC1a activation during ischemia. Indeed, acidosis alone is sufficient to induce the increase in CP-AMPARs. We also find that inhibition of ASIC1a channels circumvents any potential neuroprotective benefit arising from block of CP-AMPARs. By demonstrating that ASIC1a activation contributes to post-ischemic AMPAR plasticity, our results identify a functional interaction between acidotoxicity and excitotoxicity in hippocampal CA1 cells, and provide insight into the role of ASIC1a and CP-AMPARs as potential drug targets for neuroprotection. We thus propose that ASIC1a activation can drive certain forms of CP-AMPAR plasticity, and that inhibiting ASIC1a affords neuroprotection

    SOFIAS – Herramienta para el análisis de ciclo de vida y la calificación ambiental de edificios

    Get PDF
    This paper describes the development process of a new software tool, called SOFIAS (Software for a Sustainable Architecture), funded by the Spanish Ministry of Economy and Competitivenes. Following CEN/TC 350 standard on environmental assessment of buildings, the tool aims at assisting building professionals on reducing the life-cycle environmental impact through the design of new buildings and the refurbishment of existing ones. In addition, SOFIAS provides a rating system based on the Life Cycle Assessment (LCA) methodology. This paper explains the innovative aspects of this software, the working methodology and the different type of results that can be obtained using SOFIAS.SOFIAS (Ref. number IPT-2011-0948-380000) project co financed by the Spanish Ministry of Economy and Competitiveness

    Acid-sensing (proton-gated) ion channels (ASICs) in GtoPdb v.2023.1

    Get PDF
    Acid-sensing ion channels (ASICs, nomenclature as agreed by NC-IUPHAR [48, 2, 3]) are members of a Na+ channel superfamily that includes the epithelial Na+ channel (ENaC), the FMRF-amide activated channel (FaNaC) of invertebrates, the degenerins (DEG) of Caenorhabitis elegans, channels in Drosophila melanogaster and 'orphan' channels that include BLINaC [70] and INaC [72] that have also been named BASICs, for bile acid-activated ion channels [90]. ASIC subunits contain 2 TM domains and assemble as homo- or hetero-trimers [45, 41, 7, 94, 93, 77] to form proton-gated, voltage-insensitive, Na+ permeable, channels that are activated by levels of acidosis occurring in both physiological and pathophysiological conditions with ASIC3 also playing a role in mechanosensation (reviewed in [44, 89, 48, 69, 23]). Splice variants of ASIC1 [termed ASIC1a (ASIC, ASICα, BNaC2α) [84], ASIC1b (ASICβ, BNaC2β) [19] and ASIC1b2 (ASICβ2) [79]; note that ASIC1a is also permeable to Ca2+], ASIC2 [termed ASIC2a (MDEG1, BNaC1α, BNC1α) [66, 85, 40] and ASIC2b (MDEG2, BNaC1β) [56]] differ in the first third of the protein. Unlike ASIC2a (listed in table), heterologous expression of ASIC2b alone does not support H+-gated currents. A third member, ASIC3 (DRASIC, TNaC1) [83] is one of the most pH-sensitive isoforms (along with ASIC1a) and has the fastest activation and desensitisation kinetics, however can also carry small sustained currents. ASIC4 (SPASIC) evolved as a proton-sensitive channel but seems to have lost this function in mammals [58]. Mammalian ASIC4 does not support a proton-gated channel in heterologous expression systems but is reported to downregulate the expression of ASIC1a and ASIC3 [1, 43, 34, 54]. ASICs channels are primarily expressed in central (ASIC1a, -2a, 2b and -4) and peripheral neurons including nociceptors (ASIC1-3) where they participate in neuronal sensitivity to acidosis. Humans express, in contrast to rodents, ASIC3 also in the brain [27]. ASICs have also been detected in taste receptor cells (ASIC1-3)), photoreceptors and retinal cells (ASIC1-3), cochlear hair cells (ASIC1b), testis (hASIC3), pituitary gland (ASIC4), lung epithelial cells (ASIC1a and -3), urothelial cells, adipose cells (ASIC3), vascular smooth muscle cells (ASIC1-3), immune cells (ASIC1,-3 and -4) and bone (ASIC1-3) (ASIC distribution is reviewed in [55, 28, 42]). A neurotransmitter-like function of protons has been suggested, involving postsynaptically located ASICs of the CNS in functions such as learning and fear perception [35, 50, 97], responses to focal ischemia [91] and to axonal degeneration in autoimmune inflammation in a mouse model of multiple sclerosis [39], as well as seizures [98] and pain [89, 29, 30, 13, 32]. Heterologously expressed heteromultimers form ion channels with differences in kinetics, ion selectivity, pH- sensitivity and sensitivity to blockers that resemble some of the native proton activated currents recorded from neurones [56, 5, 38, 11]. In general, the known small molecule inhibitors of ASICs are non-selective or partially selective, whereas the venom peptide inhibitors have substantially higher selectivity and potency. Several clinically used drugs are known to inhibit ASICs, however they are generally more potent at other targets (e.g. amiloride at ENaCs, ibuprofen at COX enzymes) [68, 63]. The information in the tables below are for the effects of inhibitors on homomeric channels, for information of known effects on heteromeric channels see the comments below

    Acid-sensing (proton-gated) ion channels (ASICs) (version 2020.5) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    Acid-sensing ion channels (ASICs, nomenclature as agreed by NC-IUPHAR [43, 2, 3]) are members of a Na+ channel superfamily that includes the epithelial Na+ channel (ENaC), the FMRF-amide activated channel (FaNaC) of invertebrates, the degenerins (DEG) of Caenorhabitis elegans, channels in Drosophila melanogaster and 'orphan' channels that include BLINaC [62] and INaC [64] that have also been named BASICs, for bile acid-activated ion channels [81]. ASIC subunits contain two TM domains and assemble as homo- or hetero-trimers [41, 38, 7] to form proton-gated, voltage-insensitive, Na+ permeable, channels that are activated by levels of acidosis occurring in both physiological and pathophysiological conditions with ASIC3 also playing a role in mechanosensation (reviewed in [40, 80, 43, 61, 21]) . Splice variants of ASIC1 [termed ASIC1a (ASIC, ASICα, BNaC2α) [75], ASIC1b (ASICβ, BNaC2β) [17] and ASIC1b2 (ASICβ2) [70]; note that ASIC1a is also permeable to Ca2+] and ASIC2 [termed ASIC2a (MDEG1, BNaC1α, BNC1α) [59, 76, 37] and ASIC2b (MDEG2, BNaC1β) [51]] have been cloned and differ in the first third of the protein. Unlike ASIC2a (listed in table), heterologous expression of ASIC2b alone does not support H+-gated currents. A third member, ASIC3 (DRASIC, TNaC1) [74] is one of the most pH-sensitive isoforms (along with ASIC1a) and has the fastest activation and desensitisation kinetics, however can also carry small sustained currents. ASIC4 (SPASIC) evolved as a proton-sensitive channel but seems to have lost this function in mammals [52]. Mammalian ASIC4 does not support a proton-gated channel in heterologous expression systems but is reported to downregulate the expression of ASIC1a and ASIC3 [1, 39, 31, 49]. ASIC channels are primarily expressed in central (ASIC1a, -2a, 2b and -4) and peripheral neurons including nociceptors (ASIC1-3) where they participate in neuronal sensitivity to acidosis. They have also been detected in taste receptor cells (ASIC1-3)), photoreceptors and retinal cells (ASIC1-3), cochlear hair cells (ASIC1b), testis (hASIC3), pituitary gland (ASIC4), lung epithelial cells (ASIC1a and -3), urothelial cells, adipose cells (ASIC3), vascular smooth muscle cells (ASIC1-3), immune cells (ASIC1,-3 and -4) and bone (ASIC1-3) (ASIC distribution is well reviewed in [50, 25]). A neurotransmitter-like function of protons has been suggested, involving postsynaptically located ASICs of the CNS in functions such as learning and fear perception [32, 45, 87], responses to focal ischemia [82] and to axonal degeneration in autoimmune inflammation in a mouse model of multiple sclerosis [36], as well as seizures [88] and pain [80, 26, 27, 13, 29]. Heterologously expressed heteromultimers form ion channels with differences in kinetics, ion selectivity, pH- sensitivity and sensitivity to blockers that resemble some of the native proton activated currents recorded from neurones [51, 5, 35, 11]. In general, the known small molecule inhibitors of ASICs are non-selective or partially selective, whereas the venom peptide inhibitors have substantially higher selectivity and potency. Several clinically used drugs are known to inhibit ASICs, however they are generally more potent at other targets (e.g. amiloride at ENaCs, ibuprofen at COX enzymes) [60, 56]. The information in the tables below are for the effects of inhibitors on homomeric channels, for information of known effect on heteromeric channels see the comments below

    Acid-sensing (proton-gated) ion channels (ASICs) in GtoPdb v.2021.3

    Get PDF
    Acid-sensing ion channels (ASICs, nomenclature as agreed by NC-IUPHAR [45, 2, 3]) are members of a Na+ channel superfamily that includes the epithelial Na+ channel (ENaC), the FMRF-amide activated channel (FaNaC) of invertebrates, the degenerins (DEG) of Caenorhabitis elegans, channels in Drosophila melanogaster and 'orphan' channels that include BLINaC [66] and INaC [68] that have also been named BASICs, for bile acid-activated ion channels [86]. ASIC subunits contain 2 TM domains and assemble as homo- or hetero-trimers [43, 40, 7, 90, 89, 73] to form proton-gated, voltage-insensitive, Na+ permeable, channels that are activated by levels of acidosis occurring in both physiological and pathophysiological conditions with ASIC3 also playing a role in mechanosensation (reviewed in [42, 85, 45, 65, 23]) . Splice variants of ASIC1 [termed ASIC1a (ASIC, ASICα, BNaC2α) [80], ASIC1b (ASICβ, BNaC2β) [19] and ASIC1b2 (ASICβ2) [75]; note that ASIC1a is also permeable to Ca2+] and ASIC2 [termed ASIC2a (MDEG1, BNaC1α, BNC1α) [63, 81, 39] and ASIC2b (MDEG2, BNaC1β) [53]] have been cloned and differ in the first third of the protein. Unlike ASIC2a (listed in table), heterologous expression of ASIC2b alone does not support H+-gated currents. A third member, ASIC3 (DRASIC, TNaC1) [79] is one of the most pH-sensitive isoforms (along with ASIC1a) and has the fastest activation and desensitisation kinetics, however can also carry small sustained currents. ASIC4 (SPASIC) evolved as a proton-sensitive channel but seems to have lost this function in mammals [55]. Mammalian ASIC4 does not support a proton-gated channel in heterologous expression systems but is reported to downregulate the expression of ASIC1a and ASIC3 [1, 41, 33, 51]. ASIC channels are primarily expressed in central (ASIC1a, -2a, 2b and -4) and peripheral neurons including nociceptors (ASIC1-3) where they participate in neuronal sensitivity to acidosis. They have also been detected in taste receptor cells (ASIC1-3)), photoreceptors and retinal cells (ASIC1-3), cochlear hair cells (ASIC1b), testis (hASIC3), pituitary gland (ASIC4), lung epithelial cells (ASIC1a and -3), urothelial cells, adipose cells (ASIC3), vascular smooth muscle cells (ASIC1-3), immune cells (ASIC1,-3 and -4) and bone (ASIC1-3) (ASIC distribution is well reviewed in [52, 27]). A neurotransmitter-like function of protons has been suggested, involving postsynaptically located ASICs of the CNS in functions such as learning and fear perception [34, 47, 93], responses to focal ischemia [87] and to axonal degeneration in autoimmune inflammation in a mouse model of multiple sclerosis [38], as well as seizures [94] and pain [85, 28, 29, 13, 31]. Heterologously expressed heteromultimers form ion channels with differences in kinetics, ion selectivity, pH- sensitivity and sensitivity to blockers that resemble some of the native proton activated currents recorded from neurones [53, 5, 37, 11]. In general, the known small molecule inhibitors of ASICs are non-selective or partially selective, whereas the venom peptide inhibitors have substantially higher selectivity and potency. Several clinically used drugs are known to inhibit ASICs, however they are generally more potent at other targets (e.g. amiloride at ENaCs, ibuprofen at COX enzymes) [64, 60]. The information in the tables below are for the effects of inhibitors on homomeric channels, for information of known effect on heteromeric channels see the comments below

    Acid-sensing (proton-gated) ion channels (ASICs) (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    Acid-sensing ion channels (ASICs, nomenclature as agreed by NC-IUPHAR [35]) are members of a Na+ channel superfamily that includes the epithelial Na+ channel (ENaC), the FMRF-amide activated channel (FaNaC) of invertebrates, the degenerins (DEG) of Caenorhabitis elegans, channels in Drosophila melanogaster and 'orphan' channels that include BLINaC [46] and INaC [47] that have also been named BASICs, for bile acid-activated ion channels [58]. ASIC subunits contain two TM domains and assemble as homo- or hetero-trimers [34, 31, 5] to form proton-gated, voltage-insensitive, Na+ permeable, channels (reviewed in [33, 57]). Splice variants of ASIC1 [termed ASIC1a (ASIC, ASICα, BNaC2α) [55], ASIC1b (ASICβ, BNaC2β) [13] and ASIC1b2 (ASICβ2) [50]; note that ASIC1a is also permeable to Ca2+] and ASIC2 [termed ASIC2a (MDEG1, BNaC1α, BNC1α) [45, 56, 30] and ASIC2b (MDEG2, BNaC1β) [40]] have been cloned. Unlike ASIC2a (listed in table), heterologous expression of ASIC2b alone does not support H+-gated currents. A third member, ASIC3 (DRASIC, TNaC1) [54], has been identified. A fourth mammalian member of the family (ASIC4/SPASIC) does not support a proton-gated channel in heterologous expression systems and is reported to downregulate the expression of ASIC1a and ASIC3 [1, 32, 24, 39]. ASIC channels are primarily expressed in central and peripheral neurons including nociceptors where they participate in neuronal sensitivity to acidosis. They have also been detected in taste receptor cells (ASIC1-3), photoreceptors and retinal cells (ASIC1-3), cochlear hair cells (ASIC1b), testis (hASIC3), pituitary gland (ASIC4), lung epithelial cells (ASIC1a and -3), urothelial cells, adipose cells (ASIC3), vascular smooth muscle cells (ASIC1-3), immune cells (ASIC1,-3 and -4) and bone (ASIC1-3). A neurotransmitter-like function of protons has been suggested, involving postsynaptically located ASICs of the CNS in functions such as learning and fear perception [25, 36, 63], responses to focal ischemia [59] and to axonal degeneration in autoimmune inflammation in a mouse model of multiple sclerosis [29], as well as seizures [64] and pain [19, 20, 10, 22]. Heterologously expressed heteromultimers form ion channels with differences in kinetics, ion selectivity, pH- sensitivity and sensitivity to blockers that resemble some of the native proton activated currents recorded from neurones [40, 3, 28, 8]

    Low Temperature Embedding

    Get PDF
    The Lowicryl resins K4M and HM20 are methacrylate/acrylate based formulations which can re used for embedding biological material at low temperature in conjunction with either the progressive lowering of temperature (PLT) technique or with freeze-substitution. The resins are applicable over a very extended temperature range, approximately 210°K to 340°K. Even lower temperatures down to ca. 190°K can be reached with two new resins, K11M and HM23. Test embeddings of unfixed material after freeze-substitution have given promising results which could re useful for imnunocytochemical labeling. Lipid extraction is small or absent when the two new resins are used in combination with freeze-substitution

    Efficient preparation of Arabidopsis pollen tubes for ultrastructural analysis using chemical and cryo-fixation

    Get PDF
    The pollen tube (PT) serves as a model system for investigating plant cell growth and morphogenesis. Ultrastructural studies are indispensable to complement data from physiological and genetic analyses, yet an effective method is lacking for PTs of the model plant Arabidopsis thaliana. Methods: Here, we present reliable approaches for ultrastructural studies of Arabidopsis PTs, as well as an efficient technique for immunogold detection of cell wall epitopes. Using different fixation and embedding strategies, we show the amount of PT ultrastructural details that can be obtained by the different methods. Results: Dozens of cross-sections can be obtained simultaneously by the approach, which facilitates and shortens the time for evaluation. In addition to in vitro-grown PTs, our study follows the route of PTs from germination, growth along the pistil, to the penetration of the dense stylar tissue, which requires considerable mechanical forces. To this end, PTs have different strategies from growing between cells but also between the protoplast and the cell wall and even within each other, where they share a partly common cell wall. The separation of PT cell walls in an outer and an inner layer reported for many plant species is less clear in Arabidopsis PTs, where these cell wall substructures are connected by a distinct transition zone. Conclusions: The major advancement of this method is the effective production of a large number of longitudinal and cross-sections that permits obtaining a detailed and representative picture of pollen tube structures in an unprecedented way. This is particularly important when comparing PTs of wild type and mutants to identify even subtle alterations in cytoarchitecture. Arabidopsis is an excellent plant for genetic manipulation, yet the PTs, several-times smaller compared to tobacco or lily, represent a technical challenge. This study reveals a method to overcome this problem and make Arabidopsis PTs more amenable to a combination of genetic and ultrastructural analyses

    Binding Modes of Peptidomimetics Designed to Inhibit STAT3

    Get PDF
    STAT3 is a transcription factor that has been found to be constitutively activated in a number of human cancers. Dimerization of STAT3 via its SH2 domain and the subsequent translocation of the dimer to the nucleus leads to transcription of anti-apoptotic genes. Prevention of the dimerization is thus an attractive strategy for inhibiting the activity of STAT3. Phosphotyrosine-based peptidomimetic inhibitors, which mimic pTyr-Xaa-Yaa-Gln motif and have strong to weak binding affinities, have been previously investigated. It is well-known that structures of protein-inhibitor complexes are important for understanding the binding interactions and designing stronger inhibitors. Experimental structures of inhibitors bound to the SH2 domain of STAT3 are, however, unavailable. In this paper we describe a computational study that combined molecular docking and molecular dynamics to model structures of 12 peptidomimetic inhibitors bound to the SH2 domain of STAT3. A detailed analysis of the modeled structures was performed to evaluate the characteristics of the binding interactions. We also estimated the binding affinities of the inhibitors by combining MMPB/GBSA-based energies and entropic cost of binding. The estimated affinities correlate strongly with the experimentally obtained affinities. Modeling results show binding modes that are consistent with limited previous modeling studies on binding interactions involving the SH2 domain and phosphotyrosine(pTyr)-based inhibitors. We also discovered a stable novel binding mode that involves deformation of two loops of the SH2 domain that subsequently bury the C-terminal end of one of the stronger inhibitors. The novel binding mode could prove useful for developing more potent inhibitors aimed at preventing dimerization of cancer target protein STAT3
    corecore