933 research outputs found
High level sill and dyke intrusions initiated from rapidly buried mafic lava flows in scoria cones of Tongoa, Vanuatu (New Hebrides), South Pacific
Scoria cones are generally considered to grow rapidly in days to weeks or months. During their growth lava flows may be fed onto the cone surface from lava-lake breaches, or form by coalescence of spatter; such flows are preserved interbedded with scoria lapilli and ash beds. On Tongoa, an island of the Vanuatu volcanic arc in the South Pacific, a series of scoria cones developed during the Holocene, forming a widespread monogenetic volcanic field. Half sections of scoria cones along the coast expose complex interior architecture cone architectures. On the western side of Tongoa Island a scoria cone remnant with steeply crater-ward dipping beds of scoria ash and lapilli contains various dm-to-m thick lava flows, which are connected by irregular dikes cutting obliquely across the beds of the cone. The lava flows are coherent igneous bodies with well-developed flow top and basal breccias. The lavas interbedded with the cone-forming layers are part of a larger (up to 7 m thick) body that is connected to dykes and sills of irregular geometries that intrude the cone's pyroclastic layers. This 3D relationship suggests that the lava flows were buried quickly under the accumulating scoriaceous deposits. This allowed subsequent escape of magma from the fluid interiors of flows, with the magma then squeezed upward or laterally into the accumulating pyroclastic pile. Movement of the pile above the partly mobile lava, and potential destabilisation during intrusion into the pile of lava squeezed from the flows, may signal the onset of localised cone failures, and could be implicated in development of major cone breaches (e.g. Paricutin)
Non-stationarity in daily and sub-daily intense rainfall – Part 1: Sydney, Australia
This study was driven by a need to clarify how variations in climate might affect intense rainfall and the potential for flooding. Sub-daily durations are of particular interest for urban applications. Worldwide, few such observation-based studies exist, which is mainly due to limitations in data. While there are still large discrepancies between precipitation data sets from observations and models, both show that there is a tendency for moist regions to become wetter and for dry regions to become drier. However, changes in extreme conditions may show the opposite sign to those in average conditions. Where changes in observed intense precipitation have been studied, this has typically been for daily durations or longer. <br><br> The purpose of this two-part study is to examine daily and sub-daily rainfall extremes for evidence of non-stationarity. Here the problem was addressed by supplementing one long record (Part 1) by a set of shorter records for a 30-yr concurrent period (Part 2). Variations in frequency and magnitude of rainfall extremes across durations from 6 min to 72 h were assessed using data from sites in the south-east of Australia. For the analyses presented in this paper, a peaks-over-threshold approach was chosen since it allows investigating changes in frequency as well as magnitude. Non-parametric approaches were used to assess changes in frequency, magnitude, and quantile estimates as well as the statistical significance of changes for one station (Sydney Observatory Hill) for the period 1921 to 2005. Deviations from the long-term average vary with season, duration, and threshold. The effects of climate variations are most readily detected for the highest thresholds. Deviations from the long-term average tend to be larger for frequencies than for magnitudes, and changes in frequency and magnitude may have opposite signs. <br><br> Investigations presented in this paper show that variations in frequency and magnitude of events at daily durations are a poor indicator of changes at sub-daily durations. Studies like the one presented here should be undertaken for other regions to allow the identification of regions with significant increase/decrease in intense rainfall, whether there are common features with regards to duration and season exhibiting most significant changes (which in turn could lead to establishing a theoretical framework), and assist in validation of projections of rainfall extremes
After 'Black Saturday': adapting to bushfires in a changing climate
Abstract not availabl
A placebo-controlled, double-blind, randomized, multicenter study to assess the effects of dronedarone 400 mg twice daily for 12 weeks on atrial fibrillation burden in subjects with permanent pacemakers
Purpose Dronedarone is a benzofuran derivative with a pharmacological profile similar to amiodarone but has a more rapid onset of action and a much shorter half-life (13–19 h). Our goal was to evaluate the efficacy of dronedarone in atrial fibrillation (AF) patients using dual-chamber pacemakers capable of quantifying atrial fibrillation burden. Methods Pacemakers were adjusted to optimize AF detection. Patients with AF burden \u3e1 % were randomized to dronedarone 400 mg twice daily (BID) or placebo. Pacemakers were interrogated after 4 and 12 weeks of treatment. The primary endpoint was the change in AF burden from baseline over the 12-week treatment period. Patients with permanent AF, severe/recently decompensated heart failure, and current use of antiarrhythmic drugs were excluded. AF burden was assessed by a core laboratory blinded to treatment assignment. Results From 285 patients screened, 112 were randomized (mean age 76 years, 60 % male, 84 % hypertensive, 65 % with sick sinus syndrome, 26 % with diabetes mellitus type II, 15 % with heart failure). Baseline mean (SEM) AF burden was 8.77 % (0.16) for placebo and 10.14 % (0.17) for dronedarone. Over the 12-week study period, AF burden compared to baseline decreased by 54.4 % (0.22) (P = 0.0009) with dronedarone and trended higher by 12.8 % (0.16) (P = 0.450) with placebo. The absolute change in burden was decreased by 5.5 % in the dronedarone group and increased by 1.1 % in the placebo group. Heart rate during AF was reduced to approximately 4 beats/min with dronedarone (P = 0.285). Adverse events were higher with dronedarone compared to placebo (65 vs 56 %). Conclusions Dronedarone reduced pacemaker-assessed the relative AF burden compared to baseline and placebo by over 50 % during the 12-week observation period
Recommended from our members
The timing of anthropogenic emergence in simulated climate extremes
Determining the time of emergence of climates altered from their natural state by anthropogenic influences can help inform the development of adaptation and mitigation strategies to climate change. Previous studies have examined the time of emergence of climate averages. However, at the global scale, the emergence of changes in extreme events, which have the greatest societal impacts, has not been investigated before. Based on state-of-the-art climate models, we show that temperature extremes generally emerge slightly later from their quasi-natural climate state than seasonal means, due to greater variability in extremes. Nevertheless, according to model evidence, both hot and cold extremes have already emerged across many areas. Remarkably, even precipitation extremes that have very large variability are projected to emerge in the coming decades in Northern Hemisphere winters associated with a wettening trend. Based on our findings we expect local temperature and precipitation extremes to already differ significantly from their previous quasi-natural state at many locations or to do so in the near future. Our findings have implications for climate impacts and detection and attribution studies assessing observed changes in regional climate extremes by showing whether they will likely find a fingerprint of anthropogenic climate change
Metabolomics of dates (Phoenix dactylifera) reveals a highly dynamic ripening process accounting for major variation in fruit composition
BACKGROUND: Dates are tropical fruits with appreciable nutritional value. Previous attempts at global metabolic characterization of the date metabolome were constrained by small sample size and limited geographical sampling. In this study, two independent large cohorts of mature dates exhibiting substantial diversity in origin, varieties and fruit processing conditions were measured by metabolomics techniques in order to identify major determinants of the fruit metabolome. RESULTS: Multivariate analysis revealed a first principal component (PC1) significantly associated with the dates’ countries of production. The availability of a smaller dataset featuring immature dates from different development stages served to build a model of the ripening process in dates, which helped reveal a strong ripening signature in PC1. Analysis revealed enrichment in the dry type of dates amongst fruits with early ripening profiles at one end of PC1 as oppose to an overrepresentation of the soft type of dates with late ripening profiles at the other end of PC1. Dry dates are typical to the North African region whilst soft dates are more popular in the Gulf region, which partly explains the observed association between PC1 and geography. Analysis of the loading values, expressing metabolite correlation levels with PC1, revealed enrichment patterns of a comprehensive range of metabolite classes along PC1. Three distinct metabolic phases corresponding to known stages of date ripening were observed: An early phase enriched in regulatory hormones, amines and polyamines, energy production, tannins, sucrose and anti-oxidant activity, a second phase with on-going phenylpropanoid secondary metabolism, gene expression and phospholipid metabolism and a late phase with marked sugar dehydration activity and degradation reactions leading to increased volatile synthesis. CONCLUSIONS: These data indicate the importance of date ripening as a main driver of variation in the date metabolome responsible for their diverse nutritional and economical values. The biochemistry of the ripening process in dates is consistent with other fruits but natural dryness may prevent degenerative senescence in dates following ripening. Based on the finding that mature dates present varying extents of ripening, our survey of the date metabolome essentially revealed snapshots of interchanging metabolic states during ripening empowering an in-depth characterization of underlying biology. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12870-015-0672-5) contains supplementary material, which is available to authorized users
The Suppressor of AAC2 Lethality SAL1 Modulates Sensitivity of Heterologously Expressed Artemia ADP/ATP Carrier to Bongkrekate in Yeast
The ADP/ATP carrier protein (AAC) expressed in Artemia franciscana is refractory to bongkrekate. We generated two strains of Saccharomyces cerevisiae where AAC1 and AAC3 were inactivated and the AAC2 isoform was replaced with Artemia AAC containing a hemagglutinin tag (ArAAC-HA). In one of the strains the suppressor of ΔAAC2 lethality, SAL1, was also inactivated but a plasmid coding for yeast AAC2 was included, because the ArAACΔsal1Δ strain was lethal. In both strains ArAAC-HA was expressed and correctly localized to the mitochondria. Peptide sequencing of ArAAC expressed in Artemia and that expressed in the modified yeasts revealed identical amino acid sequences. The isolated mitochondria from both modified strains developed 85% of the membrane potential attained by mitochondria of control strains, and addition of ADP yielded bongkrekate-sensitive depolarizations implying acquired sensitivity of ArAAC-mediated adenine nucleotide exchange to this poison, independent from SAL1. However, growth of ArAAC-expressing yeasts in glycerol-containing media was arrested by bongkrekate only in the presence of SAL1. We conclude that the mitochondrial environment of yeasts relying on respiratory growth conferred sensitivity of ArAAC to bongkrekate in a SAL1-dependent manner. © 2013 Wysocka-Kapcinska et al
Uremic solutes and risk of end stage renal disease in type 2 diabetes
Here we studied plasma metabolomic profiles as determinants of progression to ESRD in patients with Type 2 diabetes (T2D). This nested case-control study evaluated 40 cases who progressed to ESRD during 8-12 years of follow-up and 40 controls who remained alive without ESRD from the Joslin Kidney Study cohort. Controls were matched with cases for baseline clinical characteristics; although controls had slightly higher eGFR and lower levels of urinary albumin excretion than T2D cases. Plasma metabolites at baseline were measured by mass spectrometry-based global metabolomic profiling. Of the named metabolites in the library, 262 were detected in at least 80% of the study patients. The metabolomic platform recognized 78 metabolites previously reported to be elevated in ESRD (uremic solutes). Sixteen were already elevated in the baseline plasma of our cases years before ESRD developed. Other uremic solutes were either not different or not commonly detectable. Essential amino acids and their derivatives were significantly depleted in the cases, whereas certain amino acid-derived acylcarnitines were increased. All findings remained statistically significant after adjustment for differences between study groups in albumin excretion rate, eGFR or HbA1c. Uremic solute differences were confirmed by quantitative measurements. Thus, abnormal plasma concentrations of putative uremic solutes and essential amino acids either contribute to progression to ESRD or are a manifestation of an early stage(s) of the disease process that leads to ESRD in T2D
- …
