122 research outputs found

    Gravity as a Gauge Theory on Three-Dimensional Noncommutative spaces

    Full text link
    We plan to translate the successful description of three-dimensional gravity as a gauge theory in the noncommutative framework, making use of the covariant coordinates. We consider two specific three-dimensional fuzzy spaces based on SU(2) and SU(1,1), which carry appropriate symmetry groups. These are the groups we are going to gauge in order to result with the transformations of the gauge fields (dreibein, spin connection and two extra Maxwell fields due to noncommutativity), their corresponding curvatures and eventually determine the action and the equations of motion. Finally, we verify their connection to three-dimensional gravity.Comment: arXiv admin note: text overlap with arXiv:1802.0755

    The Benefits of the Matthews Correlation Coefficient (MCC) Over the Diagnostic Odds Ratio (DOR) in Binary Classification Assessment

    Get PDF
    To assess the quality of a binary classification, researchers often take advantage of a four-entry contingency table called confusion matrix, containing true positives, true negatives, false positives, and false negatives. To recap the four values of a confusion matrix in a unique score, researchers and statisticians have developed several rates and metrics. In the past, several scientific studies already showed why the Matthews correlation coefficient (MCC) is more informative and trustworthy than confusion-entropy error, accuracy, F1 score, bookmaker informedness, markedness, and balanced accuracy. In this study, we compare the MCC with the diagnostic odds ratio (DOR), a statistical rate employed sometimes in biomedical sciences. After examining the properties of the MCC and of the DOR, we describe the relationships between them, by also taking advantage of an innovative geometrical plot called confusion tetrahedron, presented here for the first time. We then report some use cases where the MCC and the DOR produce discordant outcomes, and explain why the Matthews correlation coefficient is more informative and reliable between the two. Our results can have a strong impact in computer science and statistics, because they clearly explain why the trustworthiness of the information provided by the Matthews correlation coefficient is higher than the one generated by the diagnostic odds ratio

    Homolumo Gap and Matrix Model

    Full text link
    We discuss a dynamical matrix model by which probability distribution is associated with Gaussian ensembles from random matrix theory. We interpret the matrix M as a Hamiltonian representing interaction of a bosonic system with a single fermion. We show that a system of second-quantized fermions influences the ground state of the whole system by producing a gap between the highest occupied eigenvalue and the lowest unoccupied eigenvalue.Comment: 8 pages, 2 figure

    Solitons and giants in matrix models

    Get PDF
    We present a method for solving BPS equations obtained in the collective-field approach to matrix models. The method enables us to find BPS solutions and quantum excitations around these solutions in the one-matrix model, and in general for the Calogero model. These semiclassical solutions correspond to giant gravitons described by matrix models obtained in the framework of AdS/CFT correspondence. The two-field model, associated with two types of giant gravitons, is investigated. In this duality-based matrix model we find the finite form of the nn-soliton solution. The singular limit of this solution is examined and a realization of open-closed string duality is proposed.Comment: 17 pages, JHEP cls; v2: final version to appear in JHEP, 2 references added, physical motivation and interpretation clarifie

    Algebraic Comparison of Partial Lists in Bioinformatics

    Get PDF
    The outcome of a functional genomics pipeline is usually a partial list of genomic features, ranked by their relevance in modelling biological phenotype in terms of a classification or regression model. Due to resampling protocols or just within a meta-analysis comparison, instead of one list it is often the case that sets of alternative feature lists (possibly of different lengths) are obtained. Here we introduce a method, based on the algebraic theory of symmetric groups, for studying the variability between lists ("list stability") in the case of lists of unequal length. We provide algorithms evaluating stability for lists embedded in the full feature set or just limited to the features occurring in the partial lists. The method is demonstrated first on synthetic data in a gene filtering task and then for finding gene profiles on a recent prostate cancer dataset

    Effect of Size and Heterogeneity of Samples on Biomarker Discovery: Synthetic and Real Data Assessment

    Get PDF
    MOTIVATION: The identification of robust lists of molecular biomarkers related to a disease is a fundamental step for early diagnosis and treatment. However, methodologies for the discovery of biomarkers using microarray data often provide results with limited overlap. These differences are imputable to 1) dataset size (few subjects with respect to the number of features); 2) heterogeneity of the disease; 3) heterogeneity of experimental protocols and computational pipelines employed in the analysis. In this paper, we focus on the first two issues and assess, both on simulated (through an in silico regulation network model) and real clinical datasets, the consistency of candidate biomarkers provided by a number of different methods. METHODS: We extensively simulated the effect of heterogeneity characteristic of complex diseases on different sets of microarray data. Heterogeneity was reproduced by simulating both intrinsic variability of the population and the alteration of regulatory mechanisms. Population variability was simulated by modeling evolution of a pool of subjects; then, a subset of them underwent alterations in regulatory mechanisms so as to mimic the disease state. RESULTS: The simulated data allowed us to outline advantages and drawbacks of different methods across multiple studies and varying number of samples and to evaluate precision of feature selection on a benchmark with known biomarkers. Although comparable classification accuracy was reached by different methods, the use of external cross-validation loops is helpful in finding features with a higher degree of precision and stability. Application to real data confirmed these results

    Neuromechanical and environment aware machine learning tool for human locomotion intent recognition

    Get PDF
    Current research suggests the emergent need to recognize and predict locomotion modes (LMs) and LM transitions to allow a natural and smooth response of lower limb active assistive devices such as prostheses and orthosis for daily life locomotion assistance. This Master dissertation proposes an automatic and user-independent recognition and prediction tool based on machine learning methods. Further, it seeks to determine the gait measures that yielded the best performance in recognizing and predicting several human daily performed LMs and respective LM transitions. The machine learning framework was established using a Gaussian support vector machine (SVM) and discriminative features estimated from three wearable sensors, namely, inertial, force and laser sensors. In addition, a neuro-biomechanical model was used to compute joint angles and muscle activations that were fused with the sensor-based features. Results showed that combining biomechanical features from the Xsens with environment-aware features from the laser sensor resulted in the best recognition and prediction of LM (MCC = 0.99 and MCC = 0.95) and LM transitions (MCC = 0.96 and MCC = 0.98). Moreover, the predicted LM transitions were determined with high prediction time since their detection happened one or more steps before the LM transition occurrence. The developed framework has potential to improve the assistance delivered by locomotion assistive devices to achieve a more natural and smooth motion assistance.This work has been supported in part by the Fundação para a Ciência e Tecnologia (FCT) with the Reference Scholarship under Grant SFRH/BD/108309/2015, and part by the FEDER Funds through the Programa Operacional Regional do Norte and national funds from FCT with the project SmartOs -Controlo Inteligente de um Sistema Ortótico Ativo e Autónomo- under Grant NORTE-01-0145-FEDER-030386, and by the FEDER Funds through the COMPETE 2020—Programa Operacional Competitividade e Internacionalização (POCI)—with the Reference Project under Grant POCI-01-0145-FEDER-006941

    Reverse Engineering Gene Networks with ANN: Variability in Network Inference Algorithms

    Get PDF
    Motivation :Reconstructing the topology of a gene regulatory network is one of the key tasks in systems biology. Despite of the wide variety of proposed methods, very little work has been dedicated to the assessment of their stability properties. Here we present a methodical comparison of the performance of a novel method (RegnANN) for gene network inference based on multilayer perceptrons with three reference algorithms (ARACNE, CLR, KELLER), focussing our analysis on the prediction variability induced by both the network intrinsic structure and the available data. Results: The extensive evaluation on both synthetic data and a selection of gene modules of "Escherichia coli" indicates that all the algorithms suffer of instability and variability issues with regards to the reconstruction of the topology of the network. This instability makes objectively very hard the task of establishing which method performs best. Nevertheless, RegnANN shows MCC scores that compare very favorably with all the other inference methods tested. Availability: The software for the RegnANN inference algorithm is distributed under GPL3 and it is available at the corresponding author home page (http://mpba.fbk.eu/grimaldi/regnann-supmat

    Phosphorylation and modulation of hyperpolarization-activated HCN4 channels by protein kinase A in the mouse sinoatrial node

    Get PDF
    The sympathetic nervous system increases heart rate by activating β adrenergic receptors and increasing cAMP levels in myocytes in the sinoatrial node. The molecular basis for this response is not well understood; however, the cardiac funny current (If) is thought to be among the end effectors for cAMP signaling in sinoatrial myocytes. If is produced by hyperpolarization-activated cyclic nucleotide–sensitive (HCN4) channels, which can be potentiated by direct binding of cAMP to a conserved cyclic nucleotide binding domain in the C terminus of the channels. β adrenergic regulation of If in the sinoatrial node is thought to occur via this direct binding mechanism, independent of phosphorylation. Here, we have investigated whether the cAMP-activated protein kinase (PKA) can also regulate sinoatrial HCN4 channels. We found that inhibition of PKA significantly reduced the ability of β adrenergic agonists to shift the voltage dependence of If in isolated sinoatrial myocytes from mice. PKA also shifted the voltage dependence of activation to more positive potentials for heterologously expressed HCN4 channels. In vitro phosphorylation assays and mass spectrometry revealed that PKA can directly phosphorylate at least 13 sites on HCN4, including at least three residues in the N terminus and at least 10 in the C terminus. Functional analysis of truncated and alanine-substituted HCN4 channels identified a PKA regulatory site in the distal C terminus of HCN4, which is required for PKA modulation of If. Collectively, these data show that native and expressed HCN4 channels can be regulated by PKA, and raise the possibility that this mechanism could contribute to sympathetic regulation of heart rate
    corecore