15,355 research outputs found

    Study of extremely reddened AGB stars in the Galactic bulge

    Full text link
    Context. Extremely reddened AGB stars lose mass at high rates of >10^-5 Msun/yr. This is the very last stage of AGB evolution, in which stars in the mass range 2.0--4.0 Msun (for solar metallicity) should have been converted to C stars already. The extremely reddened AGB stars in the Galactic bulge are however predominantly O-rich, implying that they might be either low-mass stars or stars at the upper end of the AGB mass range. Aims. To determine the mass range of the most reddened AGB stars in the Galactic bulge. Methods. Using Virtual Observatory tools, we constructed spectral energy distributions of a sample of 37 evolved stars in the Galactic bulge with extremely red IRAS colours. We fitted DUSTY models to the observational data to infer the bolometric fluxes. Applying individual corrections for interstellar extinction and adopting a common distance, we determined luminosities and mass-loss rates, and inferred the progenitor mass range from comparisons with AGB evolutionary models. Results. The observed spectral energy distributions are consistent with a classification as reddened AGB stars, except for two stars, which are proto-planetary nebula candidates. For the AGB stars, we found luminosities in the range 3000--30,000 Lsun and mass-loss rates 10^-5--3x10^-4 Msun/yr. The corresponding mass range is 1.1--6.0 Msun assuming solar metallicity. Conclusions. Contrary to the predictions of the evolutionary models, the luminosity distribution is continuous, with many O-rich AGB stars in the mass range in which they should have been converted into C stars already. We suspect that bulge AGB stars have higher than solar metallicity and therefore may avoid the conversion to C-rich. The presence of low-mass stars in the sample shows that their termination of the AGB evolution also occurs during a final phase of very high mass-loss rate, leading to optically thick circumstellar shells

    Radiative decays of dynamically generated charmed baryons

    Get PDF
    In this work we study the radiative decay of dynamically generated J^P=\oh^- charm baryons into the ground state J^P=\oh^+ baryons. Since different theoretical interpretations of these baryonic resonances, and in particular of the Λc(2595)\Lambda_c(2595), give different predictions, a precise experimental measurement of these decays would be an important step for understanding their nature.Comment: 10 pages, 1 figur

    Nanoscale austenite reversion through partitioning, segregation, and kinetic freezing: Example of a ductile 2 GPa Fe-Cr-C steel

    Full text link
    Austenite reversion during tempering of a Fe-13.6Cr-0.44C (wt.%) martensite results in an ultrahigh strength ferritic stainless steel with excellent ductility. The austenite reversion mechanism is coupled to the kinetic freezing of carbon during low-temperature partitioning at the interfaces between martensite and retained austenite and to carbon segregation at martensite-martensite grain boundaries. An advantage of austenite reversion is its scalability, i.e., changing tempering time and temperature tailors the desired strength-ductility profiles (e.g. tempering at 400{\deg}C for 1 min. produces a 2 GPa ultimate tensile strength (UTS) and 14% elongation while 30 min. at 400{\deg}C results in a UTS of ~ 1.75 GPa with an elongation of 23%). The austenite reversion process, carbide precipitation, and carbon segregation have been characterized by XRD, EBSD, TEM, and atom probe tomography (APT) in order to develop the structure-property relationships that control the material's strength and ductility.Comment: in press Acta Materialia 201

    The role of slip transfer at grain boundaries in the propagation of microstructurally short fatigue cracks in Ni-based superalloys

    Full text link
    Crack initiation and propagation under high-cycle fatigue conditions have been investigated for a polycrystalline Ni-based superalloy by in-situ synchrotron assisted diffraction and phase contrast tomography. The cracks nucleated along the longest coherent twin boundaries pre-existing on the specimen surface, that were well oriented for slip and that presented a large elastic incompatibility across them. Moreover, the propagation of microstructurally short cracks was found to be determined by the easy slip transfer paths across the pre-existing grain boundaries. This information can only be obtained by characterization techniques like the ones presented here that provide the full set of 3D microstructural information

    The onset of solar cycle 24: What global acoustic modes are telling us

    Full text link
    We study the response of the low-degree, solar p-mode frequencies to the unusually extended minimum of solar surface activity since 2007. A total of 4768 days of observations collected by the space-based, Sun-as-a-star helioseismic GOLF instrument are analyzed. A multi-step iterative maximum-likelihood fitting method is applied to subseries of 365 days and 91.25 days to extract the p-mode parameters. Temporal variations of the l=0, 1, and 2 p-mode frequencies are then obtained from April 1996 to May 2009. While the p-mode frequency shifts are closely correlated with solar surface activity proxies during the past solar cycles, the frequency shifts of the l=0 and l=2 modes show an increase from the second half of 2007, when no significant surface activity is observable. On the other hand, the l=1 modes follow the general decreasing trend of the solar surface activity. The different behaviours between the l=0 and l=2 modes and the l=1 modes can be interpreted as different geometrical responses to the spatial distribution of the solar magnetic field beneath the surface of the Sun. The analysis of the low-degree, solar p-mode frequency shifts indicates that the solar activity cycle 24 started late 2007, despite the absence of activity on the solar surface.Comment: To be accepted by A&A (with minor revisions), 4 pages, 3 figures, 1 tabl
    • …
    corecore