3,846 research outputs found

    Mobility, fitness collection, and the breakdown of cooperation

    Get PDF
    The spatial arrangement of individuals is thought to overcome the dilemma of cooperation: When cooperators engage in clusters, they might share the benefit of cooperation while being more protected against noncooperating individuals, who benefit from cooperation but save the cost of cooperation. This is paradigmatically shown by the spatial prisoner's dilemma model. Here, we study this model in one and two spatial dimensions, but explicitly take into account that in biological setups, fitness collection and selection are separated processes occurring mostly on vastly different time scales. This separation is particularly important to understand the impact of mobility on the evolution of cooperation. We find that even small diffusive mobility strongly restricts cooperation since it enables noncooperative individuals to invade cooperative clusters. Thus, in most biological scenarios, where the mobility of competing individuals is an irrefutable fact, the spatial prisoner's dilemma alone cannot explain stable cooperation, but additional mechanisms are necessary for spatial structure to promote the evolution of cooperation. The breakdown of cooperation is analyzed in detail. We confirm the existence of a phase transition, here controlled by mobility and costs, which distinguishes between purely cooperative and noncooperative absorbing states. While in one dimension the model is in the class of the voter model, it belongs to the directed percolation universality class in two dimensions. DOI: 10.1103/PhysRevE.87.04271

    Three-fold way to extinction in populations of cyclically competing species

    Get PDF
    Species extinction occurs regularly and unavoidably in ecological systems. The time scales for extinction can broadly vary and inform on the ecosystem's stability. We study the spatio-temporal extinction dynamics of a paradigmatic population model where three species exhibit cyclic competition. The cyclic dynamics reflects the non-equilibrium nature of the species interactions. While previous work focusses on the coarsening process as a mechanism that drives the system to extinction, we found that unexpectedly the dynamics to extinction is much richer. We observed three different types of dynamics. In addition to coarsening, in the evolutionary relevant limit of large times, oscillating traveling waves and heteroclinic orbits play a dominant role. The weight of the different processes depends on the degree of mixing and the system size. By analytical arguments and extensive numerical simulations we provide the full characteristics of scenarios leading to extinction in one of the most surprising models of ecology

    Using self-definition to predict the influence of procedural justice on organizational, interpersonal, and job/task-oriented citizenship behaviors

    Get PDF
    An integrative self-definition model is proposed to improve our understanding of how procedural justice affects different outcome modalities in organizational behavior. Specifically, it is examined whether the strength of different levels of self-definition (collective, relational, and individual) each uniquely interact with procedural justice to predict organizational, interpersonal, and job/task-oriented citizenship behaviors, respectively. Results from experimental and (both single and multisource) field data consistently revealed stronger procedural justice effects (1) on organizational-oriented citizenship behavior among those who define themselves strongly in terms of organizational characteristics, (2) on interpersonal-oriented citizenship behavior among those who define themselves strongly in terms of their interpersonal relationships, and (3) on job/task-oriented citizenship behavior among those who define themselves weakly in terms of their distinctiveness or uniqueness. We discuss the relevance of these results with respect to how employees can be motivated most effectively in organizational settings

    Delineation of individual human chromosomes in metaphase and interphase cells by in situ suppression hybridization using recombinant DNA libraries

    Get PDF
    A method of in situ hybridization for visualizing individual human chromosomes from pter to qter, both in metaphase spreads and interphase nuclei, is reported. DNA inserts from a single chromosomal library are labeled with biotin and partially preannealed with a titrated amount of total human genomic DNA prior to hybridization with cellular or chromosomal preparations. The cross-hybridization of repetitive sequences to nontargeted chromosomes can be markedly suppressed under appropriate preannealing conditions. The remaining single-stranded DNA is hybridized to specimens of interest and detected with fluorescent or enzymelabeled avidin conjugates following post-hybridization washes. DNA inserts from recombinant libraries for chromosomes 1, 4, 7, 8, 13, 14, 18, 20, 21, 22, and X were assessed for their ability to decorate specifically their cognate chromosome; most libraries proved to be highly specific. Quantitative densitometric analyses indicated that the ratio of specific to nonspecific hybridization signal under optimal preannealing conditions was at least 8:1. Interphase nuclei showed a cohesive territorial organization of chromosomal domains, and laserscanning confocal fluorescence microscopy was used to aid the 3-D visualization of these domains. This method should be useful for both karyotypic studies and for the analysis of chromosome topography in interphase cells

    Range expansion with mutation and selection: dynamical phase transition in a two-species Eden model

    Get PDF
    The colonization of unoccupied territory by invading species, known as range expansion, is a spatially heterogeneous non-equilibrium growth process. We introduce a two-species Eden growth model to analyze the interplay between uni-directional (irreversible) mutations and selection at the expanding front. While the evolutionary dynamics leads to coalescence of both wild-type and mutant clusters, the non-homogeneous advance of the colony results in a rough front. We show that roughening and domain dynamics are strongly coupled, resulting in qualitatively altered bulk and front properties. For beneficial mutations the front is quickly taken over by mutants and growth proceeds Eden-like. In contrast, if mutants grow slower than wild-types, there is an antagonism between selection pressure against mutants and growth by the merging of mutant domains with an ensuing absorbing state phase transition to an all-mutant front. We find that surface roughening has a marked effect on the critical properties of the absorbing state phase transition. While reference models, which keep the expanding front flat, exhibit directed percolation critical behavior, the exponents of the two-species Eden model strongly deviate from it. In turn, the mutation-selection process induces an increased surface roughness with exponents distinct from that of the classical Eden model

    Laser-UV-microirradiation of interphase nuclei and posttreatment with caffeine: a new approach to establish the arrangement of interphase chromosomes

    Get PDF
    Laser UV microirradiation of Chinese hamster interphase cells combined with caffeine post-treatment produced different patterns of chromosome damage in mitosis following irradiation of a small area of the nucleus that may be classified in three categories: I) intact metaphase figures, II) chromosome damage confined to a small area of the metaphase spread, III) mitotic figures with damage on all chromosomes. Category III might be the consequence of a non-localized distortion of nuclear metabolism. By contrast, category II may reflect localized DNA damage induced by microirradiation, which could not be efficiently repaired due to the effect of caffeine. If this interpretation is right, in metaphase figures of category II chromosome damage should occur only at the irradiation site. The effect might then be used to investigate neighbourhood relationships of individual chromosomes in the interphase nucleus

    Dissociation and symptom dimensions of obsessive-compulsive disorder: A replication study

    Get PDF
    Background: Obsessive-compulsive disorder (OCD) is a phenotypically very heterogeneous disease with high rates of comorbid psychiatric pathology. Previous studies have indicated that OCD is associated with higher levels of dissociation. The aims of the present study were to replicate and extend previous findings of a significant link between certain OCD symptom dimensions and dissociation. Methods: The study sample comprised 50 patients with OCD, as confirmed by the Mini International Neuropsychiatric Interview,who had a score of at least 16 on the Yale-Brown Obsessive-Compulsive Scale. All patients were assessed with the short version of the Hamburg Obsessive-Compulsive Inventory and the Dissociative Experience Scale (DES). Correlation analyses and multiple regression analyses were performed to evaluate the relationship between OCD symptom dimensions and dissociation. Results: The checking dimension was most strongly related to dissociation, followed by the symmetry/ordering and obsessive thoughts dimensions. In contrast, no significant relationship was found between dissociation and the washing/cleaning, counting/touching, and aggressive impulses/fantasies dimensions. Multiple regression analyses revealed that: (1) only the checking dimension showed an independent positive correlation with dissociation, and (2) only higher scores on the DES subscale "amnestic dissociation" were associated with higher scores for checking compulsions. Conclusions: Our results suggest that there might be a specific link between checking behavior and dissociation in OCD. Moreover, checking compulsions seem to be particularly associated with amnestic dissociation. Further studies focusing on amnestic dissociation as a potentially important determinant of checking compulsions are warrante
    corecore