2,228 research outputs found
Recommended from our members
Improving River Flood Extent Delineation From Synthetic Aperture Radar Using Airborne Laser Altimetry
Tropical Cyclone Diurnal Cycle as Observed by TRMM
Using infrared satellite data, previous work has shown a consistent diurnal cycle in the pattern of cold cloud tops around mature tropical cyclones. In particular, an increase in the coverage by cold cloud tops often occurs in the inner core of the storm around the time of sunset and subsequently propagates outward to several hundred kilometers over the course of the following day. This consistent cycle may have important implications for structure and intensity changes of tropical cyclones and the forecasting of such changes. Because infrared satellite measurements are primarily sensitive to cloud top, the goal of this study is to use passive and active microwave measurements from the Tropical Rainfall Measurement Mission (TRMM) Microwave Imager (TMI) and Precipitation Radar (PR), respectively, to examine and better understand the tropical cyclone diurnal cycle throughout a larger depth of the storm's clouds. The National Hurricane Center's best track dataset was used to extract all PR and TMI pixels within 1000 km of each tropical cyclone that occurred in the Atlantic basin between 1998-2011. Then the data was composited according to radius (100-km bins from 0-1000 km) and local standard time (LST; 3-hr bins). Specifically, PR composites involved finding the percentage of pixels with reflectivity greater than or equal to 20 dBZ at various heights (i.e., 2-14 km in increments of 2 km) as a function of radius and time. The 37- and 85- GHz TMI channels are especially sensitive to scattering by precipitation-sized ice in the mid to upper portions of clouds. Hence, the percentage of 37- and 85-GHz polarization corrected temperatures less than various thresholds were calculated using data from all storms as a function of radius and time. For 37 GHz, thresholds of 260 K, 265 K, 270 K, and 275 K were used, and for 85 GHz, thresholds of 200-270 K in increments of 10 K were utilized. Note that convection forced by the interactions of a tropical cyclone with land (e.g., due to frictional convergence) may disrupt the natural convective cycle of a cyclone. Hence, only data pertaining to storms whose centers were greater than 300 km from land were included in the composites. Early results suggest the presence of a diurnal cycle in the PR composites of all Atlantic basin tropical cyclones from a height of 2-12 km from approximately 0-400 km radius, but the cycle is most apparent above 6 km. At a height of 8 km, there is a peak (minimum) in the percentage of PR pixels greater than or equal to 20 dBZ near 0 (21) LST in the inner core with some indication that this signal propagates outward with time. In contrast, the 37- and 85-GHz composites show little indication of a diurnal cycle at any radii, regardless of the threshold used. Ongoing work with this project will involve sub-setting the composites according to storm intensity to see if the diurnal cycle varies with storm strength. Moderate to strong vertical wind shear often leads to asymmetries in tropical cyclone convection and may disrupt the cyclone's natural diurnal cycle. Therefore, wind shear thresholds will be applied to the composites to determine if the diurnal cycle becomes more apparent in a low shear environment. Finally, other work to be completed will involve developing composites for other tropical cyclone basins, including the East Pacific, Northwest Pacific, South Pacific, and Indian Ocean
Building and Testing a GPM Passive-Microwave Hail Retrieval and Climatology
No abstract availabl
Lightning Jump Algorithm and Relation to Thunderstorm Cell Tracking, GLM Proxy and Other Meteorological Measurements
The lightning jump algorithm has a robust history in correlating upward trends in lightning to severe and hazardous weather occurrence. The algorithm uses the correlation between the physical principles that govern an updraft's ability to produce microphysical and kinematic conditions conducive for electrification and its role in the development of severe weather conditions. Recent work has demonstrated that the lightning jump algorithm concept holds significant promise in the operational realm, aiding in the identification of thunderstorms that have potential to produce severe or hazardous weather. However, a large amount of work still needs to be completed in spite of these positive results. The total lightning jump algorithm is not a stand-alone concept that can be used independent of other meteorological measurements, parameters, and techniques. For example, the algorithm is highly dependent upon thunderstorm tracking to build lightning histories on convective cells. Current tracking methods show that thunderstorm cell tracking is most reliable and cell histories are most accurate when radar information is incorporated with lightning data. In the absence of radar data, the cell tracking is a bit less reliable but the value added by the lightning information is much greater. For optimal application, the algorithm should be integrated with other measurements that assess storm scale properties (e.g., satellite, radar). Therefore, the recent focus of this research effort has been assessing the lightning jump's relation to thunderstorm tracking, meteorological parameters, and its potential uses in operational meteorology. Furthermore, the algorithm must be tailored for the optically-based GOES-R Geostationary Lightning Mapper (GLM), as what has been observed using Very High Frequency Lightning Mapping Array (VHF LMA) measurements will not exactly translate to what will be observed by GLM due to resolution and other instrument differences. Herein, we present some of the promising aspects and challenges encountered in utilizing objective tracking and GLM proxy data, as well as recent results that demonstrate the value added information gained by combining the lightning jump concept with traditional meteorological measurements
Re-entrant ferroelectricity in liquid crystals
The ferroelectric (Sm C) -- antiferroelectric (Sm C) -- reentrant
ferroelectric (re Sm C) phase temperature sequence was observed for system
with competing synclinic - anticlinic interactions. The basic properties of
this system are as follows (1) the Sm C phase is metastable in temperature
range of the Sm C stability (2) the double inversions of the helix
handedness at Sm C -- Sm C and Sm C% -- re-Sm C phase
transitions were found (3) the threshold electric field that is necessary to
induce synclinic ordering in the Sm C phase decreases near both Sm
C -- Sm C and Sm C -- re-Sm C phase boundaries, and it has
maximum in the middle of the Sm C stability region. All these properties
are properly described by simple Landau model that accounts for nearest
neighboring layer steric interactions and quadrupolar ordering only.Comment: 10 pages, 5 figures, submitted to PR
Electrically-Active Convection in Tropical Easterly Waves and Implications for Tropical Cyclogenesis in the Atlantic and East Pacific
In this study, we investigate the characteristics of tropical easterly wave convection and the possible implications of convective structure on tropical cyclogenesis and intensification over the Atlantic Ocean and East Pacific using data from the Tropical Rainfall Measurement Mission Microwave Imager, Precipitation Radar (PR), and Lightning Imaging Sensor as well as infrared (IR) brightness temperature data from the NASA global-merged IR brightness temperature dataset. Easterly waves were partitioned into northerly, southerly, trough, and ridge phases based on the 700-hPa meridional wind from the NCEP-NCAR reanalysis dataset. Waves were subsequently divided according to whether they did or did not develop tropical cyclones (i.e., developing and nondeveloping, respectively), and developing waves were further subdivided according to development location. Finally, composites as a function of wave phase and category were created using the various datasets. Results suggest that the convective characteristics that best distinguish developing from nondeveloping waves vary according to where developing waves spawn tropical cyclones. For waves that developed a cyclone in the Atlantic basin, coverage by IR brightness temperatures .240 K and .210 K provide the best distinction between developing and nondeveloping waves. In contrast, several variables provide a significant distinction between nondeveloping waves and waves that develop cyclones over the East Pacific as these waves near their genesis location including IR threshold coverage, lightning flash rates, and low-level (<4.5 km) PR reflectivity. Results of this study may be used to help develop thresholds to better distinguish developing from nondeveloping waves and serve as another aid for tropical cyclogenesis forecasting
Risk among men who have sex with men in the United States: a comparison of an Internet sample and a conventional outreach sample.
This study compared the demographics and risk behaviors of two samples of men who have sex with men (MSM), using cross-sectional data that were collected via the Internet and through conventional bar-based outreach. The Internet sample was significantly older, more likely to identify as "bisexual," and less educated than the bar sample. After controlling for age and education, few differences were observed between the samples. However, three variables that markedly differentiated the samples were history of sexually transmitted disease infection, HIV serostatus, and sources utilized to obtain health information. No difference in Internet use was found. Based on the possible decreased social desirability promoted by the use of electronic data collection methodologies, these findings provide preliminary evidence that Internet and bar respondents are similar and that the Internet may serve as an expedient as well as reliable methodology to increase understanding of risk among MSM
Terms of Engagement: Adults’ Experience in Higher Education
National Survey of Student Engagement (NSSE) data were re-analyzed to look for differences between traditional and nontraditional-age students. Surprisingly, no significant differences were found for five NSSE Benchmarks, including Supportive Campus Environment. Differences were found in subsequent analysis of two scales of academic engagement identified through follow-up factor analysi
Exploring the Dust Content of Galactic Winds with Herschel. I. NGC 4631
We present a detailed analysis of deep far-infrared observations of the
nearby edge-on star-forming galaxy NGC 4631 obtained with the Herschel Space
Observatory. Our PACS images at 70 and 160 um show a rich complex of filaments
and chimney-like features that extends up to a projected distance of 6 kpc
above the plane of the galaxy. The PACS features often match extraplanar
Halpha, radio-continuum, and soft X-ray features observed in this galaxy,
pointing to a tight disk-halo connection regulated by star formation. On the
other hand, the morphology of the colder dust component detected on larger
scale in the SPIRE 250, 350, and 500 um data matches the extraplanar H~I
streams previously reported in NGC 4631 and suggests a tidal origin. The PACS
70/160 ratios are elevated in the central ~3.0 kpc region above the nucleus of
this galaxy (the "superbubble"). A pixel-by-pixel analysis shows that dust in
this region has a higher temperature and/or an emissivity with a steeper
spectral index (beta > 2) than the dust in the disk, possibly the result of the
harsher environment in the superbubble. Star formation in the disk seems
energetically insufficient to lift the material out of the disk, unless it was
more active in the past or the dust-to-gas ratio in the superbubble region is
higher than the Galactic value. Some of the dust in the halo may also have been
tidally stripped from nearby companions or lifted from the disk by galaxy
interactions.Comment: Accepted for publication in The Astrophysical Journa
- …