research

Electrically-Active Convection in Tropical Easterly Waves and Implications for Tropical Cyclogenesis in the Atlantic and East Pacific

Abstract

In this study, we investigate the characteristics of tropical easterly wave convection and the possible implications of convective structure on tropical cyclogenesis and intensification over the Atlantic Ocean and East Pacific using data from the Tropical Rainfall Measurement Mission Microwave Imager, Precipitation Radar (PR), and Lightning Imaging Sensor as well as infrared (IR) brightness temperature data from the NASA global-merged IR brightness temperature dataset. Easterly waves were partitioned into northerly, southerly, trough, and ridge phases based on the 700-hPa meridional wind from the NCEP-NCAR reanalysis dataset. Waves were subsequently divided according to whether they did or did not develop tropical cyclones (i.e., developing and nondeveloping, respectively), and developing waves were further subdivided according to development location. Finally, composites as a function of wave phase and category were created using the various datasets. Results suggest that the convective characteristics that best distinguish developing from nondeveloping waves vary according to where developing waves spawn tropical cyclones. For waves that developed a cyclone in the Atlantic basin, coverage by IR brightness temperatures .240 K and .210 K provide the best distinction between developing and nondeveloping waves. In contrast, several variables provide a significant distinction between nondeveloping waves and waves that develop cyclones over the East Pacific as these waves near their genesis location including IR threshold coverage, lightning flash rates, and low-level (<4.5 km) PR reflectivity. Results of this study may be used to help develop thresholds to better distinguish developing from nondeveloping waves and serve as another aid for tropical cyclogenesis forecasting

    Similar works