367 research outputs found

    Accurate and High Sensitivity Identification of PNH Clones by Flow Cytometry

    Get PDF
    Flow cytometry performs a key role in the diagnosis of paroxysmal nocturnal hemoglobinuria (PNH). Careful selection and validation of antibody conjugates have allowed the development of reagent cocktails suitable for the high sensitivity detection of PNH red blood cells (RBCs) and white blood cells (WBCs) in PNH and related diseases such as aplastic anemia (AA) and some subsets of myelodysplastic syndromes (MDS). A CD235a-FITC/CD59-PE assay was developed capable of detecting Type III PNH RBCs at a limit of quantification (LOQ) of 0.01% or better. While separate 4-color Fluorescent Aerolysin (FLAER), CD24, CD15 and CD45-based neutrophil and FLAER, CD14, CD64 and CD45-based monocyte assays were developed to detect PNH WBC phenotypes, 5-, 6- and 7-color assays have subsequently been developed for more modern cytometers equipped with five or more fluorescence detectors. For instrumentation with five detectors, a single tube 5-color FLAER, CD157, CD15, CD64 and CD45-based assay to simultaneously detect PNH neutrophils and monocytes has been developed. For instruments with six or more detectors and multiple lasers, a variety of 5-, 6- and 7-color assays have been developed using combinations of FLAER, CD24, CD14 and CD157. All WBC assays have a limit of quantification (LOQ) of 0.1% or better. Using these standardized approaches, results have demonstrated good intra- and inter-laboratory performance characteristics even in laboratories with little prior experience performing PNH testing

    Sheep Models of F508del and G542X Cystic Fibrosis Mutations Show Cellular Responses to Human Therapeutics

    Get PDF
    Cystic Fibrosis (CF) is a genetic disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. The F508del and G542X are the most common mutations found in US patients, accounting for 86.4% and 4.6% of all mutations, respectively. The F508del causes deletion of the phenylalanine residue at position 508 and is associated with impaired CFTR protein folding. The G542X is a nonsense mutation that introduces a stop codon into the mRNA, thus preventing normal CFTR protein synthesis. Here, we describe the generation of CFTRF508del/F508del and CFTRG542X/G542X lambs using CRISPR/Cas9 and somatic cell nuclear transfer (SCNT). First, we introduced either F508del or G542X mutations into sheep fetal fibroblasts that were subsequently used as nuclear donors for SCNT. The newborn CF lambs develop pathology similar to CFTR−/− sheep and CF patients. Moreover, tracheal epithelial cells from the CFTRF508del/F508del lambs responded to a human CFTR (hCFTR) potentiator and correctors, and those from CFTRG542X/G542X lambs showed modest restoration of CFTR function following inhibition of nonsense-mediated decay (NMD) and aminoglycoside antibiotic treatments. Thus, the phenotype and electrophysiology of these novel models represent an important advance for testing new CF therapeutics and gene therapy to improve the health of patients with this life-limiting disorder

    The Advertisement Calls and Distribution of Two Sympatric Species of \u3cem\u3eChiasmocleis\u3c/em\u3e (MĂ©hely 1904) (Anura, Microhylidae, Gastrophryninae) from the Atlantic Forest

    Get PDF
    The advertisement calls of Chiasmocleis cordeiroi and C. crucis are described for populations from the municipalities of IgrapiĂșna and Camacan, respectively, state of Bahia, Brazil. Both calls consist of multipulsed notes produced in series. Differences between the two calls are: dominant frequency, higher in C. cordeiroi (range 4500-4898 Hz; C. crucis range 4069-4435 Hz); note rate, higher in C. cordeiroi (range 6.20--7.46 s/note; C. crucis range 5.17-5.59 s/note); pulse rate, higher in C. cordeiroi (151.82-194.83 s/note; C. crucis range 125.30- 142.12 s/note); and the structure of the modulation patterns of the notes. Moreover, the advertisement calls of C. crucis and C. cordeiroi are more similar than the calls of all syntopic congeners. Furthermore, the current distribution of both species was extended

    Cathepsin K induces platelet dysfunction and affects cell signaling in breast cancer - molecularly distinct behavior of cathepsin K in breast cancer

    Get PDF
    Background: Breast cancer comprises clinically and molecularly distinct tumor subgroups that differ in cell histology and biology and show divergent clinical phenotypes that impede phase III trials, such as those utilizing cathepsin K inhibitors. Here we correlate the epithelial-mesenchymal-like transition breast cancer cells and cathepsin K secretion with activation and aggregation of platelets. Cathepsin K is up-regulated in cancer cells that proteolyze extracellular matrix and contributes to invasiveness. Although proteolytically activated receptors (PARs) are activated by proteases, the direct interaction of cysteine cathepsins with PARs is poorly understood. In human platelets, PAR-1 and -4 are highly expressed, but PAR-3 shows low expression and unclear functions. Methods: Platelet aggregation was monitored by measuring changes in turbidity. Platelets were immunoblotted with anti-phospho and total p38, Src-Tyr-416, FAK-Tyr-397, and TGF beta monoclonal antibody. Activation was measured in a flow cytometer and calcium mobilization in a confocal microscope. Mammary epithelial cells were prepared from the primary breast cancer samples of 15 women with Luminal-B subtype to produce primary cells. Results: We demonstrate that platelets are aggregated by cathepsin K in a dose-dependent manner, but not by other cysteine cathepsins. PARs-3 and -4 were confirmed as the cathepsin K target by immunodetection and specific antagonists using a fibroblast cell line derived from PARs deficient mice. Moreover, through co-culture experiments, we show that platelets activated by cathepsin K mediated the up-regulation of SHH, PTHrP, OPN, and TGF beta in epithelial-mesenchymal-like cells from patients with Luminal B breast cancer. Conclusions: Cathepsin K induces platelet dysfunction and affects signaling in breast cancer cells.Associacao Beneficente de Coleta de Sangue (Colsan)Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES)Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)Univ Fed Sao Paulo, Dept Gynecol, BR-04024002 Sao Paulo, SP, BrazilCOLSAN, Charitable Assoc Blood Collect, BR-04080006 Sao Paulo, SP, BrazilUniv Fed Sao Paulo, Dept Biophys, BR-04024002 Sao Paulo, SP, BrazilUniv Fed Sao Paulo, Dept Biochem, BR-04024002 Sao Paulo, SP, BrazilAntonio Prudente Fdn, AC Camargo Canc Ctr, AC Camargo Hosp Biobank, Dept Pathol, BR-01509010 Sao Paulo, SP, BrazilUniv Fed Sao Paulo, Cellular Gynecol Lab, Dept Gynecol, Rua Napoleao Barros 608, BR-04024002 Sao Paulo, BrazilUniv Fed Sao Paulo, Dept Gynecol, BR-04024002 Sao Paulo, SP, BrazilUniv Fed Sao Paulo, Dept Biophys, BR-04024002 Sao Paulo, SP, BrazilUniv Fed Sao Paulo, Dept Biochem, BR-04024002 Sao Paulo, SP, BrazilUniv Fed Sao Paulo, Cellular Gynecol Lab, Dept Gynecol, Rua Napoleao Barros 608, BR-04024002 Sao Paulo, BrazilFAPESP: 2012/19780-3FAPESP: 2012/19851-8FAPESP: 2009/53766-5Web of Scienc

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 60∘60^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law E−γE^{-\gamma} with index Îł=2.70±0.02 (stat)±0.1 (sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25 (stat)−1.2+1.0 (sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO

    Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory

    Full text link
    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30 to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy -- corrected for geometrical effects -- is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO

    Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy

    Full text link
    We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8 \pm 0.7 (stat) \pm 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principle calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.Comment: Replaced with published version. Added journal reference and DOI. Supplemental material in the ancillary file

    Variation in postoperative outcomes of patients with intracranial tumors: insights from a prospective international cohort study during the COVID-19 pandemic

    Get PDF
    BACKGROUND: This study assessed the international variation in surgical neuro-oncology practice and 30-day outcomes of patients who had surgery for an intracranial tumor during the COVID-19 pandemic./ METHODS: We prospectively included adults aged ≄18 years who underwent surgery for a malignant or benign intracranial tumor across 55 international hospitals from 26 countries. Each participating hospital recorded cases for 3 consecutive months from the start of the pandemic. We categorized patients’ location by World Bank income groups (high [HIC], upper-middle [UMIC], and low- and lower-middle [LLMIC]). Main outcomes were a change from routine management, SARS-CoV-2 infection, and 30-day mortality. We used a Bayesian multilevel logistic regression stratified by hospitals and adjusted for key confounders to estimate the association between income groups and mortality./ RESULTS: Among 1016 patients, the number of patients in each income group was 765 (75.3%) in HIC, 142 (14.0%) in UMIC, and 109 (10.7%) in LLMIC. The management of 200 (19.8%) patients changed from usual care, most commonly delayed surgery. Within 30 days after surgery, 14 (1.4%) patients had a COVID-19 diagnosis and 39 (3.8%) patients died. In the multivariable model, LLMIC was associated with increased mortality (odds ratio 2.83, 95% credible interval 1.37–5.74) compared to HIC./ CONCLUSIONS: The first wave of the pandemic had a significant impact on surgical decision-making. While the incidence of SARS-CoV-2 infection within 30 days after surgery was low, there was a disparity in mortality between countries and this warrants further examination to identify any modifiable factors
    • 

    corecore